Connect with us

Published

on

Helium-3, a rare isotope formed during the early solar system, may be locked within Earth’s solid core, as indicated by recent research. This discovery could provide insights into how quickly the planet was formed. Unlike helium-4, which is commonly produced through radioactive decay, helium-3 originates from the primordial gas cloud that shaped the solar system. While traces of this isotope have been detected in volcanic hotspots and mid-ocean ridges, the mechanism behind its retention for billions of years remains uncertain. Given helium’s volatile nature, most of it was expected to escape Earth’s mantle due to tectonic activity or the giant impact that led to the formation of the Moon.

Helium and Iron Interaction at Core Conditions

According to the study published in Physical Review Letters, researchers at the University of Tokyo led by Kei Hirose examined whether helium could mix with iron under conditions mimicking Earth’s core. Using a diamond-tipped anvil, the team subjected iron and helium to extreme pressures ranging from 50,000 to 550,000 times the atmospheric pressure at Earth’s surface. As per reports, the samples were heated to temperatures between 727 and 2,727 degrees Celsius before being depressurised and analysed at cryogenic temperatures to prevent helium escape. Findings indicated that solid iron could incorporate up to 3.3 percent helium, suggesting the isotope may remain trapped in the core over long periods.

Potential Impact on Earth’s Formation Timeline

Peter Olson, a geophysicist at the University of New Mexico, told that these results confirm helium’s compatibility with Earth’s solid core. However, he noted that only 4 percent of the core is solid, with the majority existing in a liquid state. Further research is needed to determine whether helium-3 could be similarly retained in the liquid portion. Olson also highlighted the significance of this discovery in dating Earth’s formation. If helium-3 was incorporated into the core, it suggests the planet formed rapidly within a few million years. A slower formation process spanning 100 million years would likely have resulted in minimal helium retention.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


SpaceX Delays Starship Flight 8 Launch After Technical Glitches



Google Pixel 9a Surfaces on US FCC Website With Support for Satellite Connectivity

Continue Reading

Science

Mystery Deepens as Interstellar Comet 3I/ATLAS Brightens Unexpectedly Near the Sun

Published

on

By

Interstellar comet 3I/ATLAS defied expectations during its 2025 solar flyby, brightening far faster than predicted. Observatories worldwide recorded a blue coma rich in exotic gases, suggesting unique chemistry from another star system. Scientists are investigating whether its unusual composition or speed caused the outburst, marking a new interstellar mystery.

Continue Reading

Science

Is the Universe Slowing Down? Astronomers Detect Signs of Fading Dark Energy

Published

on

By

Astronomers from Yonsei University and DESI data analyses indicate dark energy, long believed constant, may be weakening. Corrected supernova results hint that cosmic acceleration is slowing—a possible “cosmic slowdown.” If true, this could help resolve the Hubble tension and redefine how the universe’s expansion and ultimate fate are understood.

Continue Reading

Science

Scientists Create Bullet-Proof Fiber Stronger and Thinner Than Kevlar

Published

on

By

Researchers have created a new fiber that surpasses Kevlar in bullet-stopping power while being much thinner. Made by aligning advanced aramid chains with carbon nanotubes, the material absorbs over twice as much energy as previous record-holding fibers. The breakthrough could lead to lighter, stronger armor for military, law enforcement and personal safety uses.

Continue Reading

Trending