Connect with us

Published

on

A 125-million-year-old fossil of a previously unknown scorpion species has been unearthed in northeastern China. The discovery, which marks the first terrestrial scorpion fossil from the Mesozoic era found in the country, has provided insights into the early evolution of these arachnids. Measuring approximately 10 centimetres in length, the scorpion is considered significantly larger than other known species from the same period. Its presence suggests that it played a crucial role in the food chain of the Early Cretaceous ecosystem, preying on small vertebrates and invertebrates.

Details of the Study

According to the study published in Science Bulletin on January 24, the fossil was discovered in the Yixian Formation, a site known for its rich collection of Early Cretaceous fossils. Researchers have named the species Jeholia longchengi, referencing the Jehol Biota, an ecosystem that thrived between 133 and 120 million years ago. The second part of the name pays homage to the Longcheng district of Chaoyang, where the fossil is currently housed.

Key Features of Jeholia longchengi

The scorpion exhibited a pentagonal body shape, rounded spiracles for respiration, elongated legs, and slender pincers without spurs. These characteristics align with certain modern-day Asian scorpion families, though distinct differences were noted. As per Diying Huang, a researcher at the Nanjing Institute of Geology and Palaeontology, the size of J. longchengi makes it unique among Mesozoic-era scorpions, most of which were considerably smaller. In an email to Live Science, he stated that this species is significantly larger than previously found scorpions from that era.

Role in the Ancient Ecosystem

Fossil records from the Jehol Biota indicate a diverse ecosystem with dinosaurs, mammals, birds, and insects. The presence of J. longchengi suggests that it likely preyed on smaller creatures, including spiders, insects, amphibians, and possibly small lizards or mammals. While the scorpion’s mouthparts were not preserved, making definitive dietary analysis challenging, its size and structure indicate a predatory role. Speaking to Xinhua, Huang noted that if the species existed today, it could serve as a natural predator to various small animals, including young vertebrates.

Rarity of Terrestrial Scorpion Fossils

The discovery is significant due to the rarity of fossilised terrestrial scorpions, as they typically reside under rocks and decaying vegetation, limiting their chances of fossilisation. Most known Mesozoic scorpion fossils have been found encased in amber, making this a rare instance of a well-preserved specimen in sedimentary rock.

The fossil is currently housed at the Fossil Valley Museum in Chaoyang, China, where further studies may provide additional insights into its ecological significance.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Astronaut Captures Rare ‘Gigantic Jet’ Lightning Extending 50 Miles Above Earth

Published

on

By

Astronaut Captures Rare ‘Gigantic Jet’ Lightning Extending 50 Miles Above Earth

A rare ‘gigantic jet’ of lightning has been photographed from space, extending nearly 50 miles above the U.S. coastline. The image was taken by an astronaut aboard the International Space Station (ISS) on November 19, 2024, but was not immediately shared by space agencies. The phenomenon was later discovered on NASA’s Gateway to Astronaut Photography of Earth website by photographer Frankie Lucena, who specialises in capturing rare lightning events. The images were subsequently highlighted by Spaceweather.com on February 26.

Jet Likely Originated Over Louisiana

According to Spaceweather.com, the ISS was positioned over the Gulf of Mexico at the time of the capture, suggesting that the lightning jet likely originated from a thunderstorm near New Orleans. Due to dense cloud cover in the image, the precise location could not be determined. Four images of lightning were identified in the astronaut’s photography sequence, but only one captured the distinct upward-shooting jet.

Understanding Gigantic Jets

Gigantic jets are powerful electrical discharges that travel upward from thunderstorms when charge layers within the clouds become inverted. Unlike conventional lightning that strikes downward, these jets extend into the ionosphere, the atmospheric layer beginning around 50 miles above the Earth’s surface. As per Spaceweather.com, these jets emit a blue glow due to interactions with nitrogen in the upper atmosphere and last for less than a second.

Uncommon but Extremely Powerful

Reports indicate that while gigantic jets were first documented in 2001, scientists estimate that around 1,000 could occur annually, though most go undetected. The most powerful recorded jet was observed in May 2018 over Oklahoma, carrying nearly 60 times the energy of a typical lightning strike. These events often conclude with red branching tendrils, similar to lightning phenomena known as sprites, but classified as separate occurrences.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact



Infinix GT 30 Pro Key Features Surface Online; Tipped to Get Gaming Trigger Buttons

Continue Reading

Science

Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact

Published

on

By

Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact

A solar storm is set to reach Earth tonight, with potential geomagnetic activity that could make the northern lights visible as far south as New York and Idaho. The event is the result of a coronal mass ejection (CME) from the Sun, which was recorded on March 1. The Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA) has classified this as a G1-level geomagnetic storm, with a possibility of stronger G2 conditions. As a result, skywatchers in mid-latitudes may witness the aurora borealis in areas where the skies remain clear.

Geomagnetic Storm Forecast and Impact

According to NOAA’s Space Weather Prediction Center, the CME is expected to make contact with Earth’s magnetic field between March 4 and March 5. The intensity of the storm is predicted to peak between 7:00 p.m. EST and 10:00 p.m. EST on March 5. While a G1 storm is considered minor, space weather physicist Tamitha Skov has indicated that G2 storm conditions remain a possibility, increasing the chances of a more widespread auroral display.

Geomagnetic storms occur when charged particles from the Sun interact with Earth’s magnetosphere, potentially affecting satellite communications, power grids, and GPS accuracy. Experts have advised that radio operators, GPS users, and drone pilots may experience signal disruptions, especially during nighttime hours when such interference is more pronounced.

Visibility and Viewing Conditions

As per reports, aurora visibility will largely depend on atmospheric clarity and light pollution levels. NOAA’s storm classification system places G1 storms as minor, meaning that the northern lights will likely be seen closer to high-latitude regions. If G2 storm conditions occur, visibility could extend further south. Observers are advised to find dark locations away from city lights for the best viewing experience.

For real-time updates and forecasts, space weather monitoring agencies continue to track the storm’s progression.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

NASA Tests Advanced Infrared Technology to Improve Wildfire Monitoring

Published

on

By

NASA Tests Advanced Infrared Technology to Improve Wildfire Monitoring

Wildfires in California during January caused widespread destruction, affecting communities and ecosystems. To improve wildfire monitoring and response, NASA deployed a new scientific instrument capable of capturing high-resolution thermal infrared images. The Compact Fire Infrared Radiance Spectral Tracker (c-FIRST) was tested aboard NASA’s B200 King Air aircraft over fire-hit areas in Pacific Palisades and Altadena. The instrument, developed for satellite-based missions, was assessed for its ability to provide real-time data on active and smoldering fires. Scientists aim to use this technology to enhance understanding of wildfire behavior and improve mitigation strategies.

Enhanced Fire Detection and Data Collection

According to reports, the c-FIRST instrument was developed and is managed by NASA’s Jet Propulsion Laboratory (JPL), with support from NASA’s Earth Science Technology Office. The compact design allows it to be deployed on airborne platforms, simulating satellite missions while providing near-instantaneous observations. The system captures a wide range of fire characteristics, including temperature variations across large areas. Unlike previous infrared imaging systems, c-FIRST can detect extremely high temperatures exceeding 1,000 degrees Fahrenheit (550 degrees Celsius) with improved clarity.

In a statement, Sarath Gunapala, principal investigator for c-FIRST at NASA JPL, noted that current fire observation instruments do not fully capture fire attributes across the Earth system. He explained that limitations in past imaging technologies have resulted in gaps in data concerning wildfire frequency, size, and intensity.

Potential Benefits for Fire Management

As per sources, c-FIRST is expected to provide critical insights for firefighting agencies by identifying smoldering fires that could reignite under changing wind conditions. In a report, Gunapala stated that the instrument’s ability to distinguish such fires in near real-time could support more effective wildfire management efforts.

KC Sujan, operations engineer for the B200 King Air, told that the aircraft’s flight characteristics made it ideal for testing the instrument. With further evaluation, c-FIRST is expected to be integrated into future satellite missions, potentially improving global wildfire monitoring capabilities.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Trending