Connect with us

Published

on

A quantum computer capable of functioning at room temperature has been developed, marking a major advancement in the field. Named Aurora, the system operates using light-based qubits and connects multiple modules through fibre optic cables. This approach aims to address key challenges in quantum computing, including scalability, fault tolerance, and error correction. The technology, designed by Xanadu, a Toronto-based quantum computing company, demonstrates the potential for networked quantum computers that do not require extreme cooling measures.

Photon-Based Quantum Computing at Scale

According to a study published in Nature, Aurora is the first quantum system that operates at scale while being entirely photonic. Traditional quantum computers rely on superconducting qubits that require near-absolute zero temperatures to function effectively. These systems face significant challenges due to heat generation and complex cooling infrastructure. By utilising photonic qubits instead of superconducting ones, Xanadu’s researchers have created a system that integrates seamlessly into existing fibre optic networks.

Networking Smaller Quantum Units

As reported, Christian Weedbrook, CEO and founder of Xanadu, explained that the industry’s primary challenges lie in improving quantum error correction and achieving scalability. The system has been designed with smaller, interconnected modules rather than a single large unit. Speaking to the publication, Darran Milne, CEO of VividQ and an expert in quantum information theory, noted that while dividing a quantum system into multiple components may improve error correction, it has been seen whether this approach will ultimately reduce errors or compound them.

Potential Applications and Future Development

The system integrates 35 photonic chips linked by 13 kilometres of fibre optic cables. Researchers believe this framework could enable large-scale quantum data centres, facilitating applications such as drug discovery simulations and secure quantum cryptography. According to Xanadu, future efforts will focus on minimising optical signal loss in fibre connections to enhance performance.

Continue Reading

Science

NASA Selects 10 New Astronauts to Support Future Moon and Mars Missions

Published

on

By

NASA has unveiled its 2025 astronaut class, selecting 10 candidates from over 8,000 applicants. For the first time, women make up the majority. Their training will prepare them for missions to the ISS, Artemis lunar exploration, and ultimately crewed missions to Mars, supporting NASA’s bold long-term spaceflight goals.

Continue Reading

Science

Scientists Confirm Ancient Asteroid Impact Created North Sea’s Silverpit Crater 43 Million Years Ago

Published

on

By

New research confirms the Silverpit Crater in the North Sea was formed by an asteroid impact around 43 million years ago. Using seismic imaging and rare mineral evidence, scientists proved the impact origin beyond doubt, resolving a debate that lasted two decades and placing the crater among Earth’s rare, well-preserved impact structures.

Continue Reading

Science

Comet C/2025 R2 (SWAN) Might Become Visible to the Naked Eye in October: Here’s What We Know

Published

on

By

Astronomers report that Comet C/2025 R2 (SWAN), discovered in September, may brighten to near naked-eye visibility in October.

Continue Reading

Trending