Connect with us

Published

on

At temperatures near absolute zero, atomic collisions have been controlled through magnetic fields, enabling precise manipulation of quantum interactions. As temperatures rise, increased kinetic energy introduces complexity, making control significantly harder. However, according to reports, scientists have demonstrated that control over atomic collisions can extend beyond ultracold conditions. This research, conducted by a team from the University of Warsaw and the Weizmann Institute of Science, challenges previous assumptions that quantum control becomes ineffective at higher temperatures. Their findings suggest that quantum interactions remain structured even in seemingly classical conditions.

Control Achieved in Unexpected Conditions

According to the study published in Science Advances, collisions between rubidium atoms and strontium cations were examined to understand their behaviour at higher temperatures. Magnetic fields have traditionally been used to manipulate atomic interactions via Feshbach resonances in ultracold settings. However, in ion-atom collisions, the interaction between the ion and the trapping mechanism complicates the process, preventing effective cooling. Reports indicate that despite this challenge, an unexpected order was observed in the way these particles interact.

Insights from Theoretical and Experimental Work

Dr. Matthew D. Frye, a researcher involved in the study, stated to phys.org that their theoretical model was initially developed to validate experimental data. However, results indicated that control over ion-atom collisions was possible even at temperatures previously considered too high for quantum effects to dominate. According to reports, these findings suggest that similar structures might exist in other atomic combinations, opening possibilities for further research.

Potential Implications for Quantum Technology

As per reports, these discoveries may influence both fundamental physics and technological advancements. Prof. Michal Tomza from the University of Warsaw told that achieving quantum control at higher temperatures could simplify future experimental approaches. He noted that quantum computing relies heavily on ultracold conditions, and these findings could pave the way for more efficient quantum devices by reducing cooling requirements.

Continue Reading

Science

NASA-ISRO NISAR Satellite Prepares to Deliver Sharpest-Ever Views of Earth

Published

on

By

The NISAR satellite, developed by NASA and ISRO, is ready to begin full science operations. Using dual-band radar, it will provide high-precision data on land movement, ice dynamics, vegetation, and natural hazards, supporting global research and disaster management efforts.

Continue Reading

Science

NASA’s Perseverance Rover Spots Megaripples, Proof Mars’ Soil Is Still Shifting

Published

on

By

NASA’s Perseverance rover has discovered striking megaripples — giant Martian sand waves — at a site called Kerrlaguna in Jezero Crater. These formations, about a meter tall, are larger than Earth’s beach ripples but smaller than the biggest dunes. Scientists say they formed when Mars had a thicker atmosphere and stronger winds, and many now appear frozen in t…

Continue Reading

Science

Scientists Create Glow-in-the-Dark Succulents That Can Replace Lamps and Streetlights

Published

on

By

Chinese researchers have created succulents that glow in the dark using special afterglow particles. The plants can shine for up to two hours and may provide a sustainable, low-carbon alternative to traditional electric lighting in the future.

Continue Reading

Trending