Connect with us

Published

on

New images from the now-decommissioned Atacama Cosmology Telescope (ACT) provide the most precise glimpse yet of the universe just 380,000 years after the Big Bang. These images of the cosmic microwave background (CMB), captured before ACT ceased operations in 2022, reveal how the first structures that would later form stars and galaxies began taking shape.

Breakthrough in Understanding Early Cosmic Structures

According to reports, the images depict the intensity and polarisation of the earliest light with unprecedented clarity, validating the standard model of cosmology. Researchers found that these findings align with previous observations, reinforcing current theories on the universe’s evolution. The data also reveal the movement of ancient gases under gravitational influence, tracing the formation of primordial hydrogen and helium clouds that later collapsed to birth the first stars.

ACT director and Princeton University researcher Suzanne Staggs said in a statement that they are seeing the first steps towards making the earliest stars and galaxies. They are seeing the polarisation of light in high resolution. It is a determining factor distinguishing ACT from Planck and other earlier telescopes, she added.

Imaging the Universe’s First Light

As per reports, before 380,000 years post-Big Bang, the universe was opaque due to a hot plasma of unbound electrons scattering photons. Once the universe cooled to approximately 3,000 Kelvin, electrons bound with protons to form neutral atoms, allowing light to travel freely. This event, known as the ‘last scattering,’ made the universe transparent, leaving behind the CMB—a fossil record of the first light.

ACT, positioned in the Chilean Andes, captured this ancient light, which has been traveling for over 13 billion years. Previous studies from the Planck space telescope provided a detailed image of the CMB, but ACT’s data offers five times the resolution and improved sensitivity.

Insights into Cosmic Evolution and Expansion

The high-resolution images also track how primordial hydrogen and helium gases moved in the universe’s infancy. According to reports, variations in the density and velocity of these gases indicate the presence of regions that eventually formed galaxies. These fluctuations, frozen in the CMB, serve as markers of the universe’s expansion history.

Using ACT data, researchers also estimated the universe’s total mass, which is equivalent to around 2 trillion trillion suns. Sources report that approximately 100 zetta-suns of this mass consist of ordinary matter, while 500 zetta-suns correspond to dark matter, and 1,300 zetta-suns are attributed to dark energy.

Addressing the Hubble Tension

One of the biggest challenges in cosmology is the discrepancy in measuring the universe’s expansion rate, known as the Hubble tension. Measurements from nearby galaxies suggest a Hubble constant of around 73-74 km/s/Mpc, while CMB observations, including those from ACT, yield a lower value of 67-68 km/s/Mpc.

Columbia University researcher Colin Hill, who studied the ACT data, told that they wanted to see if they could find a cosmological model that matched the data and also predicted a faster expansion rate. He further added that they have used the CMB as a detector for new particles or fields in the early universe, exploring previously uncharted terrain.
However, reports confirm that ACT findings align with prior CMB-based measurements, offering no evidence for alternative cosmic models that could explain the discrepancy.

Looking Ahead

ACT concluded its observations in 2022, and astronomers have now shifted focus to the Simons Observatory in Chile, which promises even more advanced studies of the universe’s early light. The new ACT data has been made publicly available through NASA’s LAMBDA archive, with related research published on Princeton’s Atacama Cosmology Telescope website.

Continue Reading

Science

Aeneas AI Model Helps Decode and Restore Ancient Roman Inscriptions

Published

on

By

Aeneas AI Model Helps Decode and Restore Ancient Roman Inscriptions

Ancient Roman Inscriptions help us understand laws, traditions, economy, and even the emotional perspective of ancient people. Their lives and histories, however, have been rendered difficult to understand because, over time, the inscriptions have been damaged. Every year, there are 1500 Roman inscriptions discovered, albeit many of them are incomplete. Fortunately, advancements in technology like the new Aeneas tool, is helping in the future understanding of the Roman inscriptions. It serves as a large language model specializing in reading, interpreting, and giving context to Roman inscriptions.

Decode Ancient Roman Inscriptions

As Per Report,Drawing its name from a hero in Roman history, Aeneas, the model has been trained on nearly 200,000 latian inscriptions, which span from the 7th century to the 8th century covering regions from Portugal to Iraq.Aneas has the capability to analyze images of damaged inscriptions and predict or even fill in missing letters or words. In addition to that, it is able to determine a time frame and location for the inscription, as well as cross-reference it with other inscriptions containing similar phrases or purposes.

Making History Clearer Through Technology

Since Aeneas is trained exclusively on Latin inscriptions, specialists believe that he is less prone to random or false errors when compared to general AI approaches. University of Sydney historian Anne Rogerson remarked that Aeneas’s proposals, as informed guesses, still involve real historical data as opposed to baseless conjectures.

Despite the model’s open availability,Made public alongside the model’s code and data, Aeneas’s creator, Google DeepMind, offered the model without restrictions.

Most impressively, Aeneas can be accessed for free, enabling students and researchers to shift through and reinterpret previously concealed fragments of Roman history to understand them on a deeper level.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Robot Drummer: Humanoid Robot Learns to Play Drums with Human-Like Precision

Continue Reading

Science

Robot Drummer: Humanoid Robot Learns to Play Drums with Human-Like Precision

Published

on

By

Robot Drummer: Humanoid Robot Learns to Play Drums with Human-Like Precision

Human-like designed robots have so far been tested for the assistive and manual tasks such as carrying objects, assisting in physical therapy and supporting elderly individuals. Their potential in expressive and creative fields, such as arts and music performance have introduced Robot Drummer which is a humanoid robot capable of drum playing both expressively and precisely. This project’s objective is to explore that robots could perform in rhythm and artistic roles.

Exploring Creativity in Humanoid Robotics

As per Tech Explore, the concept started from the casual coffee break gathering between the first author and the co-author, Asad AIi and Los Roveda respectively. They saw that humanoid robots are great at practical tasks and drumming was observed as a challenge, with combining rhythm, physical skill and coordination.

To get this, the team made a system which represents music as the rhythmic contact chain, which is a sequence of the events which signals which drum to strike and when. With the help of these cues, the robot has been trained in a simulated milieu, learning to perform the realistic techniques including switching sticks, adapting movements for efficiency and crossing arm.

Robot Drummer’s Skills and Future Potential

Tests were conducted on the simulated G1 Unitree humanoid robot, playing full drum tracks of songs from jazz to rock and metal. These included “Take Five” by Dave Brubeck, Living on a Prayer” by Bon Jovi, and “In the End” by Linkin Park. The robot achieved over 90% rhythmic accuracy, demonstrating the ability to master complex patterns.

The robot has been designed to use the ability of human drummers, such as anticipating upcoming dynamically adjusting hand positions and beats. These behaviors emerged naturally from the training process, guided by rhythmic performance rewards. The researchers believe this opens doors for robotic performers in live entertainment and other precision-based tasks.

The team’s next goal is to transfer these learned skills from simulation to a physical robot. They also aim to enable improvisation, allowing the robot to adjust its style in real time based on musical cues. This could give future robotic drummers the ability to respond to music with a level of expression closer to human musicians.

Continue Reading

Science

Twisted Jet Confirms Most Extreme Binary Black Hole System in the Universe

Published

on

By

Twisted Jet Confirms Most Extreme Binary Black Hole System in the Universe

Astronomers using a global radio telescope array have captured a record-sharp image of the blazar OJ 287, showing its particle jet is sharply bent. This twisted jet provides compelling evidence that OJ 287’s core contains not one but two supermassive black holes in a tight orbit. For decades, OJ 287’s ~12-year cycle of flares hinted at a secondary black hole, and the new image confirms that model. In fact, this appears to be the most extreme binary black hole system ever observed. Researchers say the finding makes OJ 287 “an ideal candidate for further research into merging black holes and the associated gravitational waves”.

Twisted Jet Reveals a Cosmic Duo

According to the study, using an Earth-space radio interferometer, astronomers produced an ultra-sharp image of OJ 287’s center. The image shows the jet bends sharply three times within ~0.3 light-year and swings by about 30° over a few years. Such dramatic twists so close in are naturally explained by a second black hole tugging on the jet’s base. This fits the picture of OJ 287’s 12-year flare cycle: a ~150-million-solar-mass companion plunges through the primary’s accretion disk roughly every 12 years, triggering bright outbursts and bending the jet. The observations even caught a shock wave forming in the jet, unleashing a burst of gamma rays seen by NASA’s Fermi and Swift satellites. Astronomers say this twisted, ribbon-like jet is the clearest evidence yet of two supermassive black holes locked in a gravitational tug-of-war.

Implications for Black Hole Evolution

OJ 287’s black holes will eventually merge, but that won’t happen for a very long time. In the meantime, their orbit sends out ultra-long-wavelength gravitational waves that current detectors cannot pick up. Scientists expect pulsar-timing arrays – which monitor the ticking of distant neutron stars – may detect this faint gravitational-wave signal. Looking farther ahead, future space missions like ESA/NASA’s planned LISA observatory (2030s) could catch the final merger of such supermassive pairs.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hubble Delivers Best View Yet of Rare Interstellar Comet 3I/ATLAS Racing Through Solar System

Related Stories

Continue Reading

Trending