Connect with us

Published

on

During a strange publicly livestreamed “all-hands” meeting, Tesla CEO Elon Musk said once again that he’s working on a “Master Plan Part 4” for the company, which is currently on part 3 of its master plan. But the problem is, even part 2 is not yet complete.

Tesla’s “master plans” have guided the company for years, showing a general outline of what direction it plans to go.

The first installment of Tesla’s master plan was posted in 2006, titled “The Secret Tesla Motors Master Plan (just between you and me)” (it has since been deleted from the website).

The blog post was a tongue in cheek list of Tesla’s priorities for the future, with four steps laid out:

Advertisement – scroll for more content

  1. Build sports car.
  2. Use that money to build an affordable car.
  3. Use that money to build an even more affordable car.
  4. While doing above, also provide zero-emission electric power generation options.

Tesla managed to finish all of those steps, by releasing the Roadster, Model S, and Model 3. It also purchased SolarCity and sells solar panel installations today, so, job completed. And completed quite well, considering Tesla was nothing in 2006 and hadn’t sold a single car, and is now a global powerhouse changing the entire auto industry.

Ten years after that original blog post, the “plan” was updated in 2016 with “Master Plan, Part Deux” (which has also since been deleted from the website). That plan was summarized as:

  1. Create stunning solar roofs with seamlessly integrated battery storage
  2. Expand the electric vehicle product line to address all major segments
  3. Develop a self-driving capability that is 10X safer than manual via massive fleet learning
  4. Enable your car to make money for you when you aren’t using it

This plan has not been quite as successful as the original secret master plan.

A progress check on master plan part 2

First, Tesla’s “solar roof” business has turned more into the company providing solar panel systems to independent installers. These are integrated well through software with Tesla’s Powerwall system (and additional features like Virtual Power Plants, Storm Watch, and so on). But Tesla’s solar roof project didn’t quite turn out as planned – it’s a single design instead of the four designs originally promised, and deployment of that design was… rocky, to say the least.

Second, Tesla has expanded its product line to cover two (or three) more segments: mid-size SUVs, with the Model Y; something kinda sorta approximating a truck, with the Cybertruck; and heavy trucking, with the Tesla Semi.

These are the “major” segments it said it would address in the blog post, so they get partial credit there – except that the Semi is still yet to reach any significant volume numbers, and Tesla has not released a promised “high passenger-density urban transport” (the closest thing there is the recently-announced Robovan, which is absolutely nowhere near production).

Third, Tesla has not successfully deployed self-driving capability that is 10X safer, even by its own numbers. Tesla’s Autopilot Safety Report, which the company only occasionally releases, says that Autopilot is a bit more than 5X safer than a human – but this comes with the caveat that the system will typically spend more time activated in situations where it’s more capable, and drivers will choose to take over when they think the system isn’t going to be able to do something.

Tesla doesn’t publicize data on how much safer FSD is than human drivers, rather referring to “miles between critical disengagement” and other moving goalposts.

So those are three steps which haven’t really gotten finished, but, we can perhaps give some credit for movement in the direction of each of them.

The fourth step, however, has simply not happened. This referred to an idea which at the time was called “Tesla Network,” which was supposed to be a ride-hailing app that Tesla owners could send their cars out to make money with – and the source of Musk’s “appreciating asset” comments.

Not only has that not happened, but even autonomy has not happened. Tesla FSD is still level 2, and while it claims it will have level 4 capable vehicles this year in Austin, we’ve yet to see that.

So, partial credit for master plan part 2, but we’re still in progress.

Part 3 goes in another direction, is huge in scope

After that, Tesla released Master Plan Part 3 in 2023, an entirely different sort of document than the last two. Instead of just being a snarky blog post, this was a 40-page white paper with calculations showing that the world could transition to renewable energy and solve climate change with the resources and technology available to us today.

It’s an interesting read, and despite the weird analogues to Musk’s personal beliefs about population growth, the calculations, while optimistic and self-serving for an EV/sustainable tech company, do make sense. It lays out the case about how to transition the entire world to sustainability, and I think it does so pretty persuasively. I’ve recommended it to many as a way to lay out the potential green transition.

…But, clearly, that has not happened yet either.

Musk drops hints at Tesla Master Plan 4

Then, with two plans still in progress, and only a bit more than a year after unveiling the third part, Musk announced last June that he is “working on Tesla Master Plan 4.”

Nine months later, we’ve yet to hear more details about that idea, but today during his presentation, he did refer back to it again.

Today, he was asked a question by one of the… uh… employees? assembled for his… uh… all-hands meeting/stock pumping livestream?, and the question went thusly (the question was hard to hear, so here’s the meat of it):

“What phase of the plan are we in and how long will it go?”

To which Musk responded:

“We’re at phase 3 of the master plan, since master plan 1 and 2 have been completed. Now, master plan part 3 is a very long master plan, because it’s basically making all energy on earth sustainable. And I actually need to supplement it with the, sort of, ‘abundance for all.’ Maybe thats master plan 4. I’ve kinda described master plan 4 essentially. Which is autonomous cars, autonomous humanoid robots, combine that with solar and battery storage, and I think the future’s gonna be incredible.”

So, we now have an idea of what Musk thinks master plan part 4 will be, at least, which is similar to what Electrek’s Fred Lambert predicted it would be back in June: robots and self-driving.

Electrek’s Take

But what about them? We know this is what Musk has been talking about recently, and a lot of those ideas haven’t really turned out – at least not yet.

First of all, we already know about the solar and battery storage, and the autonomous cars. Those were in previous parts of the master plan, and Musk has been promising them next year for ten years, so there’s nothing new there.

In particular, the autonomous car reaches all the way back to part 2, initiated in 2016, and is still incomplete – despite Musk’s incorrect statement today saying that it has been completed. This either suggests he doesn’t know what is going on with his company, or he’s lying. Neither is a great option.

And robots, the only new portion of the proposed master plan part 4, are definitely not quite what they’re cracked up to be – yet, at least. But that’s the point of a master plan, to start heading in that direction, not to already be there – so, fair enough.

But are Musk’s predictions about robotics realistic?

Musk has also stated that humanoid robots will be worth $20-30 trillion to Tesla’s market cap, because everyone in the world will have two personal robots. This seems unlikely on its face, but especially so when Musk says that AGI – Artificial General Intelligence, where a single computer is capable of accomplishing all the same tasks as a human – is coming this year.

Beyond AGI, Musk has claimed that Tesla will change the world in several other ways this year, but thats quite a packed release schedule given Tesla’s recent history (and its leadership’s current distractions and anti-sustainability actions). Musk is known for overpromising, and this feels like another example of such.

The idea that Tesla, a car company, will somehow be the first in the world to accomplish AGI, scaling humanoid robots to the point where everyone in the world can have two, alongside everything else, and on such a short timeline, seems unlikely.

It seems perhaps a little more likely that this meeting, and a potential part 4 of the plan, are both an attempt to reframe the current conversation about Tesla, which is quite negative as sales drop drastically amid Musk’s meddling in anti-sustainability and white supremacist politics.


Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

In rare earth metals power struggle with China, old laptops, phones may get a new life

Published

on

By

In rare earth metals power struggle with China, old laptops, phones may get a new life

A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.

Anadolu | Anadolu | Getty Images

As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.

But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.

Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.

The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.

“Recycling [of e-waste] hasn’t been taken too seriously until recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said. 

Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.

“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”

With copper, other metals, ‘recycling is going to play huge role’

Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.

Glencore has operated a huge copper smelter in Quebec, Canada, for almost  20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds. 

The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.

Stock Chart IconStock chart icon

hide content

Price of copper year-to-date 2025.

It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.

Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.

“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.

Massive amounts of e-waste

The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.

In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.

The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.

Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.

“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”

That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.

Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.

Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.

“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.” 

China commands 90% of rare earth market

Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.

The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.

The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass. 

A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.

Steve Marcus | Reuters

Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.

Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.

Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.

It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.

Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”

Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”

Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.

Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”

MP Materials CEO on deal with the Defense Department

Continue Reading

Environment

LiveWire gives surprise unveil of two smaller, lower-cost electric motorcycles

Published

on

By

LiveWire gives surprise unveil of two smaller, lower-cost electric motorcycles

LiveWire, the electric motorcycle company that was spun out of Harley-Davidson several years ago, has just shown off two fun-sized electric motorcycles designed to make powered two-wheelers more accessible to new riders, both physically and financially.

The company took to HD Homecoming, a motorcycle festival in Milwaukee, to give a surprise unveiling of the new bikes.

The bikes, which wear what look to be smaller 12″ tires and offer a barely 30″ (76 cm) seat height, are smaller and nimbler than anything we’ve seen from LiveWire before.

But that doesn’t mean they can’t perform. These aren’t some 30 mph (48 km/h) mopeds. LiveWire confirmed that early testing shows respectable performance figures of around 53 mph (85 km/h) speeds and 100 miles (160 km) of range from the pair of removable batteries.

Advertisement – scroll for more content

I’m assuming that range is measured at a lower urban speed, but these appear to be purpose-built to give riders the capability to ride where and how they want at a much more affordable price than LiveWire has ever offered.

Showing off both a trail and a street version, the LiveWire seems to be covering all of its bases.

“The trail model is intended for riding backyards, pump tracks, or even out on the ranch or campgrounds,” the brand explained. “The street model is perfect for urban errands, new riders, mini-moto fans, and anyone looking for a new hobby in the form of a readily customizable, approachable electric moto experience.”

LiveWire hasn’t shared any pricing details yet, and the two models are understood to still be in their development phase, but the advanced stages of the designs mean we likely won’t have to wait too much longer.

And with most of LiveWire’s current electric motorcycle models in the $16k- $17k, these bikes could conceivably cost less than half of that figure, changing the equation for young riders who can’t afford a luxury ride.

Electrek’s Take

Of course, they had to do this unveiling at the exact time that I was banging out a multi-thousand-word treatise bemoaning the fact that LiveWire hadn’t launched any smaller models yet. Hmmm, maybe it’s time for an article about how the e-bike industry needs a single battery standard.

Anyway, I’m all-in on this! I can’t even describe how excited this news makes me! This is an important step for LiveWire’s growth because the kind of folks who are drawn to electric motorcycles are often a different market than that sought by traditional legacy motorcycle manufacturers. LiveWire’s existing models are impressive, both in their extreme performance and their design, but they’re still powerhouses that provide more kick than most riders probably need.

These new mini e-motos could be exactly what new riders are looking for. Consider all the teens and young adults ripping it up on Sur Rons in towns across the US right now. Those Sur Rons aren’t street-legal bikes and they were never meant for the riding they’re most commonly being used for. But a street bike in a fun little Grom form factor like LiveWire is showing off? It could scratch that itch and also provide riders with the safety and support of a motorcycle company that comes from a storied history of over 100 years of motorcycle design, all from a new brand like LiveWire that speaks young riders’ language.

And that trail version – same thing. It’s going to offer the fun off-road riding that so many are looking for, yet do it in a well-designed package that isn’t just produced by some nameless factory in China trying to eke out the best profit margin.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

This new wireless e-bike charger wants to be the future of electric bikes

Published

on

By

This new wireless e-bike charger wants to be the future of electric bikes

Forget fumbling with cables or hunting for batteries – TILER is making electric bike charging as seamless as parking your ride. The Dutch startup recently introduced its much-anticipated TILER Compact system, a plug-and-play wireless charger engineered to transform the user experience for e-bike riders.

At the heart of the new system is a clever combo: a charging kickstand that mounts directly to almost any e‑bike, and a thin charging mat that you simply park over. Once you drop the kickstand and it lands on the mat, the bike begins charging automatically via inductive transfer – no cable required. According to TILER, a 500 Wh battery will fully charge in about 3.5 hours, delivering comparable performance to traditional wired chargers.

It’s an elegantly simple concept (albeit a bit chunky) with a convenient upside: less clutter, fewer broken cables, and no more need to bend over while feeling around for a dark little hole.

TILER claims its system works with about 75% of existing e‑bike platforms, including those from Bosch, Yamaha, Bafang, and other big bames. The kit uses a modest 150 W wireless power output, which means charging speeds remain practical while keeping the system lightweight (the tile weighs just 2 kg, and it’s also stationary).

Advertisement – scroll for more content

TILER has already deployed over 200 charging points across Western Europe, primarily serving bike-share, delivery, hospitality, and hotel fleets. A recent case study in Munich showed how a cargo-bike operator saved approximately €1,250 per month in labor costs, avoided thousands in spare batteries, and cut battery damage by 20%. The takeaway? Less maintenance, more uptime.

Now shifting to prosumer markets, TILER says the Compact system will hit pre-orders soon, with a €250 price tag (roughly US $290) for the kickstand plus tile bundle. To get in line, a €29 refundable deposit is currently required, though they say it is refundable at any point until you receive your charger. Don’t get too excited just yet though, there’s a bit of a wait. Deliveries are expected in summer 2026, and for now are covering mostly European markets.

The concept isn’t entirely new. We’ve seen the idea pop up before, including in a patent from BMW for charging electric motorcycles. And the efficacy is there. Skeptics may wonder if wireless charging is slower or less efficient, but TILER says no. Its system retains over 85% efficiency, nearly matching wired charging speeds, and even pauses at 80% to protect battery health, then resumes as needed. The tile is even IP67-rated, safe for outdoor use, and about as bulky as a thick magazine.

Electrek’s Take

I love the concept. It makes perfect sense for shared e-bikes, especially since they’re often returning to a dock anyway. As long as people can be trained to park with the kickstand on the tile, it seems like a no-brainer.

And to be honest, I even like the idea for consumers. I know it sounds like a first-world problem, but bending over to plug something in at floor height is pretty annoying, not to mention a great way to throw out your back if you’re not exactly a spring chicken anymore. Having your e-bike start charging simply by parking it in the right place is a really cool feature! I don’t know if it’s $300 cool, but it’s pretty cool!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending