Connect with us

Published

on

Google X has introduced the Taara chip, a fingernail-sized silicon photonics device designed to transmit high-speed internet using light beams. This new development aims to provide fast, cable-free connectivity in areas where traditional fiber-optic infrastructure is impractical. Field tests have shown that the chip can achieve data transmission speeds of 10 gigabits per second (Gbps) over a one-kilometre distance outdoors. The technology is expected to be part of a broader network that could deliver fiber-like speeds without the need for underground cables, making deployment more efficient.

Light-Based Internet Transmission

According to reports, the Taara chip operates by emitting and directing light beams carrying encoded data between two points. This approach eliminates reliance on radio frequencies, avoiding interference with existing wireless networks such as 5G. Mahesh Krishnaswamy, General Manager of Taara, stated in an official press release that the objective is to lower costs and simplify high-speed connectivity by minimising infrastructure requirements. A global mesh network of Taara-enabled devices is envisioned, allowing seamless data exchange across various locations.

Scalability and Deployment Advantages

Unlike traditional fiber-optic cables, which require extensive underground installation, the Taara system can be deployed in hours. The underlying principle mirrors that of fiber optics, where data is transmitted as pulses of light. However, by eliminating physical cables, the Taara chip offers a more flexible and scalable alternative. Reports indicate that this could benefit underserved regions, data centres, and even autonomous vehicle communication systems.

Upcoming Availability and Future Prospects

A smaller version of the existing Taara Lightbridge system, the Taara chip represents an evolution of Google X’s previous work. While Lightbridge could transmit up to 20 Gbps over distances of 20 kilometres, the new chip aims to refine and expand the technology. According to sources, the Taara chip is expected to be incorporated into a commercial product by 2026, with Google X inviting researchers to explore potential applications in the meantime.

Continue Reading

Science

AMoRE Experiment Sets New Benchmark in Neutrinoless

Published

on

By

AMoRE Experiment Sets New Benchmark in Neutrinoless

The latest phase of the AMoRE (Advanced Mo-based Rare Process Experiment) project has yielded significant findings in the search for neutrinoless double beta decay, a process that could redefine understanding of fundamental particle physics. Conducted at the Yangyang Underground Laboratory in Korea, the study involved the use of molybdate scintillating crystals at extremely low temperatures to detect this elusive nuclear event. While no clear evidence was observed, the research has set a new upper limit on the decay halflife of molybdenum-100, refining the parameters for future experiments in the field.

New Constraints Established

According to the study published in Physical Review Letters, the AMoRE collaboration utilised multiple kilograms of molybdenum-100, a radioactive isotope, in the form of scintillating crystals. The experiment aimed to detect whether two neutrons in a nucleus could decay into two protons without emitting neutrinos, a phenomenon that would confirm the neutrino and antineutrino as identical particles. Detection of this process is considered crucial for exploring matter-antimatter asymmetry in the universe.

In an interview with Phys.org, Yoomin Oh, corresponding author of the study, explained that the neutrino is one of the elementary particles in the Standard Model. It was ‘invented’ by Wolfgang Pauli about a hundred years ago and discovered a couple of decades later than that. He added that while neutrinos are among the most abundant particles, their properties, including mass, remain largely unknown.

Next Phase: AMoRE-II at Yemilab

AMoRE-I achieved the highest sensitivity ever recorded for detecting neutrinoless double beta decay in molybdenum-100, but no definitive signal was found. This outcome has refined the experimental approach, with the next phase, AMoRE-II, currently being developed at Yemilab, a newly constructed underground research facility in Korea.

The upcoming phase will involve a significantly larger quantity of molybdenum-based crystal detectors and an upgraded low-temperature detection system. The AMoRE collaboration aims to achieve an even lower background environment, enhancing the sensitivity of the experiment. Data collection for AMoRE-II is expected to begin within the next year, with researchers hoping to uncover new insights into the nature of neutrinos.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Assassin’s Creed Shadows Hits 2 Millions Players, Surpasses Launches of Assassin’s Creed Origins, Odyssey



Den of Thieves 2: Pantera OTT Release Date: When and Where to Watch it Online?

Continue Reading

Science

Did black hole radiation shape the universe?

Published

on

By

Did black hole radiation shape the universe?

A theoretical form of radiation first proposed by Stephen Hawking may have played a role in shaping the universe after the Big Bang, as suggested by recent research. The phenomenon is known as Hawking radiation. It was introduced in the 1970s when Hawking theorised that black holes could emit radiation despite their widely accepted nature as objects that absorb all matter. The study suggests that primordial black holes which are believed to have existed in the early universe, may have released intense radiation. This emission could have influenced cosmic structures in ways previously unaccounted for.

Findings from the Study

According to the study published in the Journal of Cosmology and Astroparticle Physics, a phase may have occurred in the early universe where primordial black holes dominated the energy density before evaporating through Hawking radiation. The researchers state that ultra-light primordial black holes could have rapidly gained prominence during expansion, leaving behind observable effects. The research suggests that the impact of these black holes was powerful enough to influence the formation of galaxies and cosmic structures.

Examining the Role of Hawking Radiation

The study builds on Hawking’s work. He merged aspects of quantum mechanics and general relativity. Black holes were once thought to trap everything indefinitely. The Hawking’s theory introduced the possibility of radiation emission. It is reported that larger black holes radiate at an extremely low rate, making detection with existing technology impossible. The focus shifts to smaller primordial black holes, estimated to be less than 100 tons in mass, as their radiation levels could have shaped the universe’s early structure.

Potential Implications of the Research

The study explores the possibility of Hawking relics which are stable particles resulting from the evaporation of black holes. If these particles are detected, it could provide insights into the cosmic radiation budget and the formation of atomic nuclei. The research suggests that primordial black holes must have evaporated before certain cosmic events to align with existing atomic models. While Hawking relics have not been directly observed, future technological advancements may allow for their detection. The findings open avenues for understanding black hole physics and the universe’s evolution.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Aghathiyaa Tamil Fantasy Thriller Now Streaming on Sun NXT



Assassin’s Creed Shadows Hits 2 Millions Players, Surpasses Launches of Assassin’s Creed Origins, Odyssey

Related Stories

Continue Reading

Science

Artemis II Orion Service Module Secured for Launch at Kennedy Space Center

Published

on

By

Artemis II Orion Service Module Secured for Launch at Kennedy Space Center

NASA’s Artemis II Orion spacecraft has gone through a critical step in its preparation for launch. Three spacecraft adapter jettison fairings have been installed on the service module inside the Neil A. Armstrong Operations and Checkout Building at the Kennedy Space Center in Florida. This installation was completed on March 19, 2025. It plays an important role in protecting the spacecraft during its ascent. The fairings shield the solar array wings from extreme conditions such as heat and wind while also helping to distribute the force generated by the Space Launch System (SLS) rocket. Once the spacecraft reaches space, the panels will detach, which will reduce the overall mass and allow the solar wings to deploy.

Structural Enhancements for Launch Readiness

According to NASA, the European-built service module is a key component of the Orion spacecraft. It provides power, propulsion and life support for the mission. Four solar array wings were fitted earlier in March, forming an important part of the module’s design. The newly added fairing panels are essential for safeguarding these components during launch. Their primary function is to resist the intense vibrations and aerothermal forces experienced during liftoff. Once the spacecraft exits Earth’s atmosphere, the fairings will separate, ensuring the solar arrays can function as intended.

Mission Details and Crew Objectives

The Artemis II mission will be NASA’s first crewed flight under the Artemis programme. The spacecraft will carry four astronauts. This includes NASA’s Reid Wiseman, Victor Glover and Christina Koch, along with Canadian Space Agency astronaut Jeremy Hansen. They will gp on a 10-day mission to orbit the Moon, testing the spacecraft’s capabilities before future deep-space missions. The service module will supply oxygen, water and temperature control to support the crew during their journey.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Zakir Khan’s Delulu Express Stand-Up Special Now Streaming on Prime Video



Nothing Explains Why It Used UFS 2.2 Storage in Phone 3a and Phone 3a Pro

Related Stories

Continue Reading

Trending