Connect with us

Published

on

A bright, mesmerising light was seen painting the night sky across several parts of Europe on March 24. Witnesses from the United Kingdom including Lincolnshire, Yorkshire, Leicestershire, Suffolk, and Essex along with observers in Wales, Sweden, Croatia, Poland, and Hungary, reported a stunning glowing vortex that lingered in the atmosphere for roughly 12 minutes before slowly dissipating.

Light Spiral Caused by SpaceX Rocket Reentry

According to the reports, the Falcon 9 rocket, which was responsible for this celestial display was launched from Cape Canaveral Space Force Station in Florida at 1:48 p.m. ET. The spacecraft was transporting a classified payload for the National Reconnaissance Office. Following the completion of its mission, the rocket’s second stage began its descent, initiating a spectacular visual phenomenon. As the remaining fuel was released into space, it crystallized into minuscule ice particles. Sunlight then caught these frozen droplets, generating the distinctive swirling pattern. The unique spiral shape emerged from the rocket’s rotational movement during its downward trajectory.

Increasing SpaceX Spiral Sightings

In recent years, the public has been captivated by similar cosmic spectacles. A “horned” spiral appeared in the sky above Europe in May 2024, and an aurora-coinciding launch in April 2023 created a dazzling blue spiral over Alaska. Similar structures were recorded by Hawaii’s Subaru Telescope on Mauna Kea in January 2023 and April 2022.

Although not all Falcon 9 reentry produces such observable spirals, aerospace experts point out that their frequency has grown in tandem with the rising number of rocket launches. By monitoring launch dates and predicted paths, astronomers can usually predict these events. But in this case, because the operation was classified, advance information was kept secret, which gave the night sky a sense of unanticipated amazement.

Continue Reading

Science

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

Published

on

By

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

In a major display of technical ingenuity, China has successfully rescued two satellites—DRO-A and DRO-B—that were stuck in the wrong orbit for 123 days following a launch failure. The satellites, part of China’s distant retrograde orbit (DRO) constellation, were saved using a series of complex gravitational slingshot manoeuvres that turned a near-disaster into a milestone in space navigation. This recovery mission not only preserved critical hardware but also highlighted China’s growing expertise in orbital mechanics, space rescue operations, and deep-space navigation technologies.

Innovative Thinking in critical condition

According to a recent story by CGTN, on March 15, 2024, China launched two satellites that were mounted on a Long March-2C rocket with a Yuanzheng-1S upper stage. While the launch initially appeared to be successful, a malfunction in the upper stage made the satellites tumble and head towards Earth much closer than planned. With limited power and damaged systems, conventional recovery was impossible.

Zhang Hao, a researcher at the Technology and Engineering Center for Space Utilisation (CSU), described the moment the team learned of the issue in an interview with CGTN Digital: “If the satellites were destroyed, that would have been a waste of the years of effort that we put in and the money invested in the mission. It would also be a mental blow to the team.”

CSU engineers divided into two teams—one worked to stabilise the spinning satellites, while Zhang’s team focused on calculating a new trajectory using gravitational assists. “We calculated the best route to move the satellites back on track,” Zhang explained during the interview.

A Gravity-Assisted Comeback

The mission exploited the gravitational pulls of Earth, the Moon, and even the Sun to carefully nudge the satellites into their target DRO positions. The technique is commonly applied in deep space missions, and it needs a minimal amount of fuel, which makes it a feasible way to bypass the fuel shortage. The most critical manoeuvre lasted just 20 minutes but took weeks of preparation. “I got more and more stressed as the clock ticked,” Zhang admitted. “I just kept staring at the screen until it said ‘normal, ‘” he further added.

Now successfully positioned, DRO-A and DRO-B have joined the earlier DRO-L to form a three-satellite constellation. According to CSU researcher Mao Xinyuan, the network will drastically reduce spacecraft positioning times—from days to just a few hours—and support autonomous navigation between Earth and the Moon.

This mission not only salvaged valuable satellites but also demonstrated China’s growing capability in autonomous spaceflight and long-distance orbital engineering.

Continue Reading

Science

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

Published

on

By

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

SpaceX has successfully sent another batch of Starlink satellites into space on Monday, marking its second launch of the day. At 10:34 p.m. EDT (0234 GMT on April 29), a brand-new Falcon 9 rocket carried 23 Starlink broadband satellites, including 13 equipped with direct-to-cell capability, from NASA’s Kennedy Space Centre in Florida. Earlier today, a separate Falcon 9 launched 27 Starlink satellites from Vandenberg Space Force Base in California. The rapid double mission highlights SpaceX’s pace in expanding its Internet constellation, which already stands as the largest of its kind ever deployed.

According to a Space.com report, this launch was significant as it was the first flight for this specific Falcon 9 rocket’s first stage. SpaceX’s boosters see multiple missions, with one record-setting booster achieving 27 flights to date. Despite being brand new, the first stage of the Falcon 9 made a flawless landing approximately eight minutes after launch, gently landing on the “A Shortfall of Gravitas” droneship stationed in the Atlantic Ocean.

Meanwhile, the rocket’s upper stage continued its journey, carrying the 23 Starlink satellites toward low Earth orbit (LEO). The satellites were released about 65 minutes after liftoff, joining — or more aptly, surrounding — the ever-growing constellation of Starlink spacecraft. With tonight’s successful deployment, SpaceX is one step closer to achieving its mission of offering global broadband coverage using thousands of satellites working together.

SpaceX’s 50th Falcon 9 mission of 2025, devoted to growing the Starlink network, is a highlight of the company’s relentless launch cadence, with 33 missions dedicated to the project, which now counts more than 7,200 operating satellites.

SpaceX is still growing out its satellite constellation and refining its launch-and-recovery technology. The fact that the company was able to pull off two successful Starlink missions in a single day demonstrates just how well SpaceX has been able to finesse the balance between reusability with new hardware.

Continue Reading

Science

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

Published

on

By

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

A United Launch Alliance (ULA) Atlas V rocket has been launched carrying 27 of Amazon’s Project Kuiper broadband spacecraft. The launch took place from Florida’s Cape Canaveral Space Force Station on April 28, 2025, at 7:01 PM EDT (4:31 AM IST). It is reported to be the first of more than 80 launches, which are planned to deploy a megaconstellation for Project Kuiper. The ultimate end goal for Amazon is to provide end-to-end network service, which means routing data both to and from the satellites and from the internet to the satellites and from the satellites to a customer’s terminal antenna. The effort is expected to start covering customers later this year. The remaining 80-plus launches will be performed by Atlas V and its successor, ULA’s new Vulcan Centaur rocket.

According to a Space.com report, the 27 satellites will be initially placed at an altitude of 280 miles (450 kilometres) and will later manoeuvre themselves to their operational height of 392 miles (630 kilometres). Interestingly, reports suggest that Amazon will eventually harbour more than 3,200 satellites. In contrast, SpaceX’s Starlink network already has over 7,200 active broadband satellites. The report further claims that the brand is planning to launch 80 more satellites in the next few months.

Today’s launch used an Atlas V rocket, and the Kuiper fleet rollout will see additional launch missions with more Atlas Vs and Vulcan Centaur rockets.

Amazon has also advanced its satellites with innovative technologies, such as phased array antennas, optical inter-satellite links, updatable software, solar arrays, and efficient propulsion, to create a high-performance service architecture, accessible from any point on Earth.

Amazon’s Kuiper launch seems near following satellite deployment and testing, with an approach to compete with the operational architecture of Starlink by establishing a datalink from the internet down to Earth stations.

Continue Reading

Trending