Connect with us

Published

on

NASA’s SPHEREx mission has sent back its first images from space. This marks an important step before it begins the full survey of the sky. The space telescope, which was launched on March 11, 2025, is designed to scan millions of galaxies and collect data in infrared light. On March 27, its detectors captured uncalibrated images that show thousands of light sources, including distant stars and galaxies. The images, processed with added colours for infrared wavelengths, confirm that SPHEREx is operating as expected. Once fully operational, the telescope will take 600 exposures daily and map the entire sky four times during its two-year mission.

Recorded Images Reveals Interesting Details

According to NASA’s SPHEREx mission, the observatory’s six detectors recorded images of the same area of the sky, providing a wide field of view. The top three images represent one portion of the sky, while the bottom three cover the same section. As per the report, the SPHEREx catpured each image with around 100,000 light sources. As per multiple reports, scientists can now learn more about what celestial objects and its distance from Earth with the help of infrared wavelengths. The data from SPHEREx will also help researchers to explore the origins of water in the Milky Way. Moreover, it might also help the scientists to find more clues about the universe’s earliest moments.

Olivier Doré, SPHEREx project scientist at NASA’s Jet Propulsion Laboratory (JPL) and Caltech, told NASA that the telescope is functioning as intended. The infrared light detected by SPHEREx is invisible to human eyes, but colour mapping enables researchers to visualise and analyse it. The observatory’s unique design includes 17 infrared wavelength bands for each detector, creating a total of 102 hues in every six-image capture.

How the Telescope Works

Unlike Hubble or the James Webb Space Telescope, which focuses on specific areas of space, SPHEREx is built for large-scale surveys. It uses spectroscopy to break down light and identify chemical compositions and distances of celestial bodies. Light entering the telescope is divided into two paths, each leading to three detectors. Specialised filters process the incoming wavelengths, allowing for detailed observations of millions of cosmic sources.

Beth Fabinsky, deputy project manager at JPL, said in NASA’s official statement that the successful image capture represents a major milestone. The telescope has also reached its target operating temperature of minus 350 degrees Fahrenheit, crucial for detecting faint infrared signals. Since focusing cannot be adjusted after launch, mission engineers verified the accuracy of the telescope’s optics before sending it into space.

Jamie Bock, principal investigator at JPL and Caltech, confirmed in NASA’s report that the telescope is performing as expected. Engineers will continue testing before the observatory begins routine operations in late April.

Continue Reading

Science

Iran’s Folded Rocks Reveal Ancient Tectonic Power at Asia-Europe Boundary

Published

on

By

Iran’s Folded Rocks Reveal Ancient Tectonic Power at Asia-Europe Boundary

The deformed rocks of Iran are formed due to strong mountain ridges and valleys in the Greater Caucasus mountain range, southwest of the Caspian Sea. Between 10 million and 50 million years ago, its growth was marked by sedimentary layers crushed during the first impact between the Arabian and Eurasian tectonic plates. The vividly coloured rocks produced by the sedimentary layers gathered over millennia range in tone from terracotta to greenish to bluish. Using satellite pictures, NASA’s Jet Propulsion Laboratory and Earth Observatory have shown how the landscape tended to cluster over time.

One image depicts the different strata layers, vegetation, and the Zanjan-Tabriz freeway linking Tehran and Poznan. Interestingly, another image is of the Qezel Ozan River, which provides agricultural water in the region. The region is still converging, and fresh research suggests that a slab of oceanic crust is being shredded beneath Iraq and Iran.

Iran’s Folded Rocks Expose Arabia-Eurasia Tectonic Collision

According to reported NASA experts, a tectonic clash between the continents — known as Eurasia and Arabia — crunched these vividly hued strata of rock into massive folds. Located southwest of the Caspian Sea, Iran’s folded rocks are mountain ridges and valleys from the Greater Caucasus mountain chain. The disrupted rocks are made of sedimentary layers that were tilted and folded after the first collision between the Arabian and Eurasian tectonic plates, which is estimated to have occurred 10 to 50 million years ago.

Under Iraq and Iran, some of the oceanic crust between the Arabian and Eurasian plates is breaking apart, according to current research, which results in an anomalous silt accumulation at the surface. The complexity of the Earth’s surface and the Qezel Ozan River, combined with the Neotethys oceanic plate pulling the area down, account for this.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Nothing’s CMF Phone 2 Pro Teasers Reveal Design, Show Dual Tone Finish, Swappable Rear Panel



Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Continue Reading

Science

Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Published

on

By

Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Astronomers might have discovered a dark galaxy, primarily made up of dark matter, in the local universe. Dark galaxies are theoretical starless systems that could provide valuable insight for galaxy formation models. The candidate was in a massive, rapidly moving gas cloud, first discovered in the 1960s. At high resolution, the methyl formate cloud appeared to be a tight knot of gas, potentially forming a dark galaxy. But not all astronomers are convinced. It’s more likely to be a regular gas cloud at the edge of the Milky Way, says the astronomer Tobias Westmeier.

The study was published in Science Adviser. It reveals that since the early 2000s, a few possible dark galaxies have been discovered close to the Milky Way. However, multiple studies have suggested that these alleged dark galaxies were misclassified. The study further highlights that the hypothetical dark galaxy evolved this way after a collision with cosmic gas close to our galaxy. Finding dark galaxies could enable better computer simulations and provide fresh insight into galaxy development.

Astronomers Discover Dark Galaxy Candidate Near Milky Way

According to the report, a hypothetical dark galaxy was revealed amid the field of dark matter in the early eras of the history of the universe. Better knowledge of the development of black galaxies, systems devoid of stars, is what astronomers aim for. First spotted half a century ago, a massive, fast-moving gas cloud showed new promise when scientists detected it. High-resolution cloud observations revealed a tiny gas cluster possibly matching a dark galaxy. Jin-Long Xu from the Chinese Academy of Sciences in Beijing told Science News that the finding marks the first of a potential black galaxy in the nearby universe.

Still, not all scientists agree with the dark galaxy designation of the clump. The report further notes that Westmeier thinks the object is most likely a regular gas cloud at the Milky Way’s edge. The idea dates back to identifying some purported black galaxies in orbit as far back as the early 2000s.

The latest discoveries came from observations with three radio telescopes, including high-resolution photos from the Five-Hundred-meter Aperture Spherical Telescope (FAST) in southern China. In much of the cluster, the scientists shadowed the velocity and direction of hydrogen gas and then deduced distance, which they found to be 900,000 light-years from Earth.

Continue Reading

Science

NASA Scientists Study Crystal Formation in Space For Future Applications

Published

on

By

NASA Scientists Study Crystal Formation in Space For Future Applications

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Trending