Connect with us

Published

on

A massive disruption to the Arctic polar vortex has pushed the ring of wind that circles the North Pole away from its perch and toward Europe. Scientists predict that the migration will cause colder-than-average temperatures in portions of the continent and the eastern United States in the next week. On March 9, the polar vortex began to drift off course when its powerful winds suddenly turned from west to east to blow in the opposite direction. Though this change generally occurs in mid-April, this year’s reversal occurred remarkably early based on a blog article made April 3 by NOAA.

Scientists Observe Displacement of Arctic Polar Vortex

According to the officials of NOAA, “the polar vortex is not likely to find its normal location above the North Pole.” It is doubtful it will recover its wintertime strength and will ultimately “enter hibernation” over Northern Europe.

As the polar vortex fades, temperatures in Northern Europe, portions of Asia, and the eastern United States will be below average. “Temperatures for the last week of March were pretty normal across the eastern US, but the latest forecasts do predict increased chances of below-normal temperatures for the next week,” they reported.

How the Vortex Disruption Impacts Weather Globally

If global warming is influencing the polar vortex, it could paradoxically increase the likelihood of catastrophic winter weather outbreaks in the mid-latitudes.

Among the options is that the “preferred” position of the polar vortex might be sensitive to local changes in sea ice cover. One study, for instance, connected the decline in sea ice extent in February in the Barents and Kara Seas in the eastern Arctic to a change in the polar vortex toward Eurasia between the 1980s and the 2000s. Along with the vortex shift, winters were colder than usual in Siberia and the mid-latitudes of central Eurasia.

Overland stated, “Every way people have tried to look at this question has produced some evidence for a connection and some evidence against a connection.” One study team will find that Arctic sea ice loss is upsetting the atmospheric circulation in ways that result in harsh mid-latitude winters. Another team would contend that the peculiar patterns of air circulation come first and cause both the cold winters over the mid-latitude continents and the warm Arctic. From Overland’s perspective, insufficient data exists either way to either support or reject the hypothesis.

What Comes Next?

A massive disruption to the Arctic polar vortex has pushed the ring of wind that circles the North Pole away from its perch and toward Europe, according to a new animation.

Climate analysts say it would bring about below-average temperatures over the eastern United States next week and many areas of the country.

On March 9, the polar vortex wobbled and then snapped back the other way as mighty winds, suddenly shifting from the west to the east – something that typically happens once a year – usually in the middle of April, according to a National Oceanic and Atmospheric Administration (NOAA) blog post on April 3, 2020. This year, it happened pretty early.

Continue Reading

Science

Physicists Reveal a New Type of Twisting Solid That Behaves Almost Like a Living Material

Published

on

By

The discovery of “rotating crystals” marks a major leap in physics and materials research. These unusual solids, composed of spinning particles, behave almost like living systems—twisting, fragmenting, and rebuilding themselves.

Continue Reading

Science

James Webb Telescope Finds Early Universe Galaxies Were More Chaotic Than We Thought

Published

on

By

The James Webb Space Telescope has revealed that galaxies in the early universe were far more chaotic and unstable than once believed. A new study shows that gas turbulence and intense star formation disrupted young galaxies, reshaping scientists’ understanding of how galaxies evolved into the structured systems seen today.

Continue Reading

Science

Astrophotographer Captures Stunning “Raging Baboon Nebula” in Deep Space

Published

on

By

A stunning new image by Greg Meyer shows the “Raging Baboon Nebula” in Corona Australis, about 500 light-years away. Captured over 13 nights at Starfront Observatory in Texas, the photo reveals a baboon-like face formed by blue reflection nebulae and dark molecular dust.

Continue Reading

Trending