Connect with us

Published

on

Lightning is commonly considered a sign of disaster in the forest, as lightning kills or damages trees. On the lowlands of Panama, the tonka bean tree (Dipteryx oleifera) might have evolved to capitalize on this natural occurrence. New research suggests that lightning strikes could help the tonka bean tree (Dipteryx oleifera). According to Live Science research, these trees not only survive these electrical interactions unharmed, but the lightning also harms their competitors and the parasitic vines that cling to the tonka bean plants.

The researchers published their findings on March 26 in the journal New Phytologist. Lightning is a major cause of tree mortality in tropical forests, particularly among the largest and oldest trees, which play important roles in carbon storage and biodiversity.

Lightning as a Canopy Weapon

On average, each lightning hit destroyed over 2.4 tons (2 metric tons) of adjacent tree biomass and approximately 80 percent of the lianas (parasitic vines) that plagued the tonka bean canopy. As per Gora’s assumption, the key to these trees’ lightning resistance comes from their physical structure.

A few studies describe the tree as having strong internal conductivity, letting lightning current flow through without building up damaging heat like a well-insulated wire. Because they tend to grow large — up to 130 feet (40 meters)—and live for centuries, a single tonka bean tree is estimated to be struck at least five times after reaching maturity. Each strike helps to clear out vines and competitors, opening up the canopy to help it thrive.

Ecological Impact and Evolutionary Marvel

Gregory Moore, a horticulturalist from the University of Melbourne who was not involved in the study, thinks the results will apply to other species. “The sort of work could also apply to other tree-dominated plant communities, such as woodlands or low woodlands where trees are widely separated, so it’s nothing like a tropical forest,” he said, adding that other tall trees are also possible targets of lightning strikes.

More Than Just a Tree

“We have long known that some trees can withstand multiple lightning strikes,” Moore said, noting that some tall trees survive Australian bushfires and grow up towering over their neighbors, making them prime targets for lightning strikes. “They are often referred to as stags because the top of the crown has been blown out, but they can survive for centuries after being hit by lightning,” he added.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Google NotebookLM App Is Coming Soon, Company Confirms



EU Decisions on Alleged Apple, Meta Tech Rule Breaches Due in Coming Weeks, Antitrust Chief Says

Continue Reading

Science

Virginia Tech Engineers Craft Durable, Self‑Repairing, and Recyclable PCBs

Published

on

By

Virginia Tech Engineers Craft Durable, Self‑Repairing, and Recyclable PCBs

A team of scientists has developed a new kind of self-healing circuit board that stays functional even after severe mechanical damage and can be reshaped or recycled entirely using heat. Infused with liquid metal and built using a polymer known as vitrimer, the new circuit boards could dramatically cut electronic waste and transform the durability of consumer electronics. Vitrimer retains the strength of traditional thermoset materials while allowing flexibility and repair, making it possible to reconfigure damaged boards without compromising electrical performance.

As per a study published in Advanced Materials on June 1, the boards were created by blending vitrimer with just 5% by volume of liquid metal droplets. This combination nearly doubled the material’s strain-at-break, or stretchability, compared to vitrimer alone. The embedded droplets are flexible as well, serving as flexible conductors in place of metal wiring used in traditional boards. Using a rheometer, tests showed the material was able to return to its original shape after heat-induced deformation ranging from 170°C to 200°C, which conventional epoxy-based thermosets cannot achieve.

Engineers also demonstrated that the material remains highly conductive and can recover its electrical function after being damaged. “Modern circuit boards simply cannot do this,” said Josh Worch, co-lead author of the study. His team designed the dynamic composite with the aim of building a circular economy around electronics. The design addresses a major environmental concern: most circuit boards today use thermosets that cannot be recycled and end up in landfills.

Electronic waste has more than doubled in 12 years, from 34 to 62 billion kilograms, as noted in a 2024 UN report. Despite containing valuable metals like gold, current boards are difficult to break down and reclaim due to the permanent nature of thermosetting plastics. The new vitrimer-based design, by contrast, allows for easy separation and reuse of materials. “Even if the board is damaged,” said Michael Bartlett, another co-lead author, “electrical performance will not suffer.”

More work needs to be done to improve the recovery of some elements, but the advance is a big step toward greener electronics, the researchers say. The technology could one day be in many different types of devices, from phones and laptops to wearables and TVs, changing the way devices are made, operated, and recycled.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Meta CEO Mark Zuckerberg Reportedly Restructures AI Division, Creates Meta Superintelligence Labs



Nothing Phone 3 First Impressions

Continue Reading

Science

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

Published

on

By

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

German Scientists at GSI Helmholtzzentrum für Schwerionenforschung found a new superheavy isotope, 257Sg, named Seaborgium, which reveals unexpected details about the stability and nuclear fission. This study was published in Physical Review Letters and describes how this isotope, made by fusing chromium-52 with lead-206, survived for 12.6 milliseconds, longer than usual. The rare longevity and decay into 253Rf provide new indications of how K-quantum numbers or angular momentum impact the fission resistance. The findings fill in the gaps and give us an understanding of the effects of quantum shells in superheavy nuclei, which is crucial for preventing immediate disintegration.

Challenging Traditional Views on K-Quantum Numbers and Fission

As per the study by GSI, it challenges conservative views on how K-quantum numbers impact fission. Previously, it was found that the higher K values lead to greater fission hindrance, but after getting the findings from the GSI team, a more complex dynamic emerged. They found that K-quantum numbers offer hindrance to fission, but it is still ot known that it is how much, said Dr. Pavol Mosat, the study’s co-author.

Discovery of First K-Isomeric State in Seaborgium

An important milestone is the identification of the first K-isomeric state in seaborgium. In 259Sg, the scientists found that the conversion of the electron signal occurs 40 microseconds after the nuclear formation. This is clear evidence of the high angular momentum K-isomer. These states have longer lifetimes and friction in fission in a more effective way than their ground-state counterparts.

Implications for the Theorised Island of Stability

This discovery by the scientists provides key implications for the Island of stability, which has long been theorised. It is a region where superheavy elements could have comparatively long half-lives. If K-isomers are present in the still undiscovered elements such as 120, they can enable scientists in the detection of nuclei that would otherwise decay in just under one microsecond.

Synthesising 256Sg with Ultra-Fast Detection Systems

This team of German Scientists under GSI is now aiming to synthesise 256Sg, which might decay quicker than observed or predicted. Their success is dependent on the ultra-fast detection systems created by GSI, which are capable of capturing events within 100 nanoseconds. This continued research by the team may help in reshaping the search and studying the heaviest elements in the periodic table.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OpenAI Says It Has No Plan to Use Google’s In-House Chip



Apple Loses Bid to Dismiss US Smartphone Monopoly Case

Continue Reading

Science

NASA CODEX Telescope on ISS Reveals Hidden Secrets of the Sun’s Corona

Published

on

By

NASA CODEX Telescope on ISS Reveals Hidden Secrets of the Sun’s Corona

A mini solar telescope aboard the International Space Station caught the first-ever images, which reveal the subtle and never-seen changes in the outer atmosphere of the Sun. It is known as the Coronal Diagnostic Experiment (CODEX) and has been designed to understand the solar corona, the outer layer of the Sun, in depth. This mini telescope functions like a coronagraph, which blocks the Sun’s disk to imitate the total solar eclipse. CODEX was delivered through SpaceX Dragon on November 5, 2024. It was mounted on the ISS using the Canadarm2 robotic arm on November 9, 2025.

Revolutionising Solar Observation

According to the report by NASA, the unique design of CODEX consists of an occulting disk the size of a tennis ball held by three arms made up of metal. It allows it to block the intense sunlight when imaging the faint corona. The first images were revealed on June 10, 2025, at the time of the American Astronomical Society’s meeting in Alaska. These comprised pictures of coronal streamers and footage of the temperature fluctuations in the outer corona over many days. This offers a fresh perspective on solar dynamics.

Measuring Solar Wind Like Never Before

CODEX is unlike the previous coronagraphs as it is the first to measure both the speed and temperature of the solar wind. There is a constant flow of superhot particles from the Sun. With the help of four narrowband filters, in which two are used for determining the temperature and two for speed, astronomers compare brightness to decode these properties, which helps in solving the mystery of how the solar wind reaches 1.8 million degrees Fahrenheit.

Tackling the Solar Weather Challenge

To know the solar wind, it is crucial to predict the geomagnetic storms triggered by the coronal holes. Shortly, the storms observed on June 13, 2025 and June 25, 2025, caused auroras because of these events. After refining the analysis of solar wind, CODEX can help in mitigating and forecasting such kind of disturbances.

A Timely Launch Amid Solar Peak

NASA’s CODEX started operations at a suitable moment, just as the current solar maximum comes to its end. As the magnetic field of the Sun shifts during the solar battle zone, CODEX is ready to catch the critical data that can change our understanding of the weather in space.

Continue Reading

Trending