Connect with us

Published

on

Scientists say that dinosaurs weren’t doomed when an asteroid hit Earth. Fossil unearthings before the asteroid collision, at the end of the Cretaceous epoch, show that dinosaurs were losing variety and numbers. At first, some scientists thought this alteration showed dinosaurs were headed toward extinction even before the fatal asteroid incident. Nevertheless, this concept has long been argumentative, with other researchers insisting that dinosaur diversity was doing just fine at the time of their loss of life.

Challenging the Long-Held Narrative

According to a report by Live Science, the visible rarity of dinosaurs before their extinction may merely be due to a low fossil record. Emphasizsng four families—that is, the Ankylosauridae, Ceratopsidae, Hadrosauridae, and Tyrannosauridae—the studies of the scientists reveal records of approximately 8,000 fossils from North America dating to the Campanian age (83.6 million to 72.1 million years ago) and Maastrichtian age (72.1 million to 66 million years ago).

Th range of dinosaurs peaked 76 million years ago and started to shrink after the asteroid collision wiped off the nonavian dinosaurs. This drift was more pronounced than in the 6 million years before the mass annihilation, with the number of fossils from all four families reducing in the geological record.

Fossil Records and Statistical Models Paint a New Picture

Vegetation either covered or obscured geological outcrops from the Maastrichtian period in North America. Specifically, rock from this time that might contain dinosaur fossils was not easily accessible to the researchers who were searching for them. The study’s encapsulation might also have worldwide branching due to North America being home to half of the familiar fossils from this age.

A Catastrophic Exception, Not a Gradual End

There is no evidence of environmental conditions or other aspects that would specifically elaborate the reason of this decline, the researchers landed. All of the dinosaur broods were far-flung, as per models come into being developed by the researchers — and consequently at low risk for extinction, barring a catastrophic event such as the asteroid effect.

In the group of 8,000 fossil records evaluated, the team found that ceratopsians—a group that includes horned dinosaurs like Triceratops and its relatives — were the most common; most likely, they inhabited plain regions that were most conducive to preservation during the Maastrichtian era.

Continue Reading

Science

NASA Reveals a Fracture in Huge Cosmic Bone: Everything You Need to Know

Published

on

By

NASA Reveals a Fracture in Huge Cosmic Bone: Everything You Need to Know

X-ray is a very common method that almost every individual is well aware of. However, ever wondered what an X-ray of the Milky Way would look like? Or is that even possible? Well, yes, it is. Recently, NASA’s Chandra X-Ray Observatory has carried out an image of a recent scan, which revealed a fractured bone. As specified in Space.com, the bone-like structure, which was witnessed in the X-ray image, was derived from the radio data obtained by the MeerKAT Radio Array in South Africa and the National Science Foundation’s Very Large Array in New Mexico.

About the Cause of Fracture

According to the data obtained from Chandra’s X-ray, the fracture, also known as the galactic center filament, was caused by the impact from a pulsar. A pulsar is a spinning neutron star that emits radiation constantly at regular intervals. Revealed in Space.com, the scientists are highly skeptical about the speed of the pulsar, during slamming, would have been between one to two million miles per hour.

What is a Galactic Center Filament

Milky Way, undoubtedly, does not consist of bone. However, what looks like a real bone is a Galactic Center Filament, which is an amalgamation of structures crafted by the radio waves interwoven with the magnetic fields, right at the center of the Milky Way.

What did scientists discover?

As conveyed to Space.com, this is one of the brightest and longest galactic center filaments that have been detected so far. The distances of these filaments are 26,000 light-years and 230 light-years long. The bone has been named as G359.13142-0.20005.

The Scientist’s Verdict

Narrated to Space.com, the scientists suggest that the collision with the neutron stars would have dismantled the filament’s magnetic field, which further resulted in the fracture. The scientists are hopeful that the fracture will heal itself.

Continue Reading

Science

NASA Telescopes Reveal Hidden Properties of X-Ray Pulsar RX J0032.9-7348

Published

on

By

NASA Telescopes Reveal Hidden Properties of X-Ray Pulsar RX J0032.9-7348

Pulsars are neutron stars rotating rapidly, emitting electromagnetic radiation in various wavelengths, including radio waves, optical, X-ray, and gamma-ray. Identified as a X ray transient source in the Small Magellanic Cloud (SMC) about 30 years ago, RX J0032.9-7348 has been classified as an X-ray Pulsar after detecting X-ray pulsations with a period of approximately 7.02 seconds after experiencing an X-ray brightening in October 2024.To take a closer look at it, astronomers have incorporated two NASA X-ray telescope, NICER and NuSTAR.

Discovery and Observational Campaign

According to Handbook of X-ray and Gamma ray Astrophysics, Accretion-powered X-ray pulsars (XRPs) are neutron stars within binary systems that emit X-rays in regular pulses, powered by the accretion of matter from a companion star. However, although RX J0032.9-7348 has been known for decades, very little is known regarding its properties and its optical counterpart has not been identified. Therefore, a team of astronomers led by Birendra Chhotaray of the Physical Research Laboratory (PRL) in Ahmedabad, India, decided to take a closer look at this pulsar with NuSTAR and NICER.
Dr Chhotaray and his team were able to verify the X-ray pulsation period of RX J0032.9-7348 through their observations and they also discovered that this pulsar has a double-peak pulse profile throughout a wide energy range, with small changes in the form of energy dependence.

Findings

Results of the observational campaign, published on the arXiv preprint server, gives insight of the spin dynamics and luminosity of this pulsar. The accretion processes during the X-ray brightening phase increases its angular momentum. It results into a spin-up of approximately -0.00033 seconds per day.
The luminosity of the pulsar varied from 8.2 undecillion to 37 undecillion erg/s during the monitoring campaign. The researchers report that no evidence of iron emission line or cyclotron resonance scattering features was found in the energy spectrum of this source.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Soviet Venus Probe Kosmos 482 Set to Re-Enter Earth After 53 Years in Single Piece



Threads Rolls Out Instagram-Like Account Status Feature for More Transparency

Related Stories

Continue Reading

Science

Soviet Venus Probe Kosmos 482 Set to Re-Enter Earth After 53 Years in Single Piece

Published

on

By

Soviet Venus Probe Kosmos 482 Set to Re-Enter Earth After 53 Years in Single Piece

Kosmos 482, under the USSR Venera program, was launched into space in 1972 to land on the second planet. However, the rocket malfunctioned and in Earth’s orbit, and it’s still revolving there ever since. Its rugged design lets it stay there and tolerate the atmosphere of Venus. This durability implies that it could survive reentry into Earth and remain intact with no impact. It is supposed to land either on 9 or 10 May without actually breaking anything up. The Aerospace Corporation is tracking it through the radar data provided by the U.S Space network surveillance.

When and Where Might It Land?

As per the current forecasts, ESA reports that the lander will re-enter the Earth’s atmosphere on Saturday, May 10, 12:37 PM EST, with an error margin of ±20.6 hours. Due to an orbital inclination of 52 degrees, it is possible that it could land between the vast regions including Australia, South America and Africa, and in water covering these areas. On the map, it is between 52 degrees North and 52 degrees south. It may fall into the ocean, as 70% of the Earth is water.

What Happens If It Survives Reentry?

If Kosmos 482 reaches the Earth in one piece, the speed would be 150-250 km per hour. The structure would be the same, that is, around 1 meter in diameter and 495 kgs in weight. The scientists predict that the parachute system must have no longer been there after 53 years in space.

Exact Timing Become Challenging

Solar activities, such as storms, are adding complexity to the radar data sometimes which in turn is impacting the reentry timings. Langbroek says, The Sun does whatever it wants to do, making it difficult to analyse the exact hours until the last moment.

Risk to the Public Is Low

Scientists say that the risk to humans is minimal, with a 0.4% chance of death or even injury. It will come down as a single object, with no debris risk. However, if anyone happens to encounter is should stay away and not touch it, simply report to the local authorities.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s SPHEREx Telescope Begins 3D Infrared Mapping of the Universe



Threads Rolls Out Instagram-Like Account Status Feature for More Transparency

Continue Reading

Trending