Connect with us

Published

on

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Science

NASA’s GRACE Satellites Reveal Hidden Deep-Earth Process Behind Gravity Disturbance

Published

on

By

Scientists have discovered a mysterious gravity signal detected by satellites nearly 20 years ago, which is linked to deep mantle changes beneath the Earth’s surface. The anomaly, lasting two years, coincided with a magnetic “jerk”, suggesting a rapid mass shift near the planet’s core.

Continue Reading

Science

‘FlyingToolbox’ Drone System Achieves Sub-Centimeter Accuracy in Mid-Air Tool Exchange

Published

on

By

Researchers from Westlake University have developed the ‘FlyingToolbox,’ a drone system that exchanges tools mid-air with sub-centimeter precision. Using vision tracking, electromagnets, and AI airflow correction, it achieved 0.8 cm accuracy even under strong downwash. The innovation could transform aerial maintenance, construction, and rescue operations.

Continue Reading

Science

James Webb Space Telescope Detects Phosphine on Brown Dwarf Wolf 1130C

Published

on

By

Using the James Webb Space Telescope, scientists have detected phosphine gas in the atmosphere of the brown dwarf Wolf 1130C, about 54 light-years away. The finding suggests phosphine can form in extreme, non-biological environments, challenging its status as a potential biomarker and reshaping how scientists search for alien life.

Continue Reading

Trending