Connect with us

Published

on

A study published in April 2025 provides new insight into one of the mysterious historical climate change periods known as LALIA (the Late Antique Ice Age). This period is known to last from 536 to 660 AD. The trio of scientists, namely, Christopher Spencer, Ross Mitchell and Thomas Gernon, published in a journal describing the analysis of misplaced Greenland rocks found lodged in the cliffs of Iceland, offering direct evidence of iceberg activity connected to this period of an ice age.

Discovery of the LALIA

The study was published in the journal Geology. As per Phys.org, the earlier research has depicted that the Earth’s northern hemisphere had undergone a chilly spell beginning around 540 AD because of the eruption of huge volcanoes, which led to the rise in debris in the atmosphere, leading to the darkening of the skies. A few historians speculated that the sudden cold weather led the Goths to attack the Romans in Europe, as they moved toward the south, warmer regions led to the fall of the Roman Empire.

Understanding the Misplaced Rocks

The researchers studied some cliffs on the western coast when they noticed that the rocks actually looked out of place. They collected a few rocks to study in the lab. The team crushed the rocks in the lab to study their remnants under a microscope. They pulled the zircon crystals from the centre of these rocks.

In their lab, the team crushed the rocks and looked at their remnants under a microscope, allowing them to pull out zircon crystals from their centres. These crystals can be used as a time capsule. After studying their age and composition, the scientists could trace the original place of these rocks across Greenland. This predicts that these rocks were moved by someone more than 1500 years ago.

The scientists studied the rocks’ age placed at the LALIA, depicting that the rocks were moved after breaking the ice from the large glaciers of Greenland that formed as per the colder scenarios formed during that period.

Scope of the Study

The research stands as a major step forward in understanding the Earth’s climate in the past. These rocks have given clear proof of increased glacial activity at the time of LALIA, indicating the outcomes of modern and future climatic changes.

Continue Reading

Science

Blue Origin Joins SpaceX in Orbital Booster Reuse Era With New Glenn’s Successful Launch and Landing

Published

on

By

Blue Origin’s New Glenn successfully launched NASA’s ESCAPADE mission to Mars on November 13, 2025, marking its second flight and its first ocean booster landing on the ship Jacklyn. The mission deploys twin satellites built by Rocket Lab to study how the solar wind strips Mars’ atmosphere during a 22-month journey to the Red Planet.

Continue Reading

Science

AI-Assisted Study Finds No Evidence of Liquid Water in Mars’ Seasonal Dark Streaks

Published

on

By

A large-scale AI analysis of more than two million Mars orbiter images shows that the planet’s dark slope streaks form through seasonal dust avalanches, not flowing briny water. The results settle a long-running debate, revealing that wind-driven dust activity shapes Mars’ surface and offering new insights into the planet’s climate past and exploration future.

Continue Reading

Science

Researchers Expose Shocking Vulnerabilities in Satellite Communications

Published

on

By

Researchers using basic satellite equipment intercepted thousands of unencrypted transmissions from space, exposing sensitive data such as corporate communications, text messages, and even government links. The study highlights major security flaws in satellite networks used worldwide. Experts warn the findings reveal how easily hackers could exploit these vulnerabili…

Continue Reading

Trending