Connect with us

Published

on

Jupiter’s weather just got even stranger. A new study published in the Journal Science Advances revealed that the gas giant’s turbulent thunderstorms create massive, softball-sized hailstones called “mushballs,” made of ammonia and water ice. These violent storms churn Jupiter’s atmosphere so deeply that they may explain a long-standing mystery among the scientists: the missing ammonia in the planet’s upper layers. For years, scientists were puzzled over why deep pockets of ammonia seemed absent across Jupiter’s atmosphere.

Mushballs Shake Up Old Assumptions

As per a report by LiveScience, Scientists believed Jupiter’s atmosphere was well mixed, much like a pot of boiling water. However, after analysing a massive 2017 storm captured by Juno, researchers found that even local storms can punch ammonia deep into the planet, shattering the old assumption. “The top of the atmosphere is actually a pretty poor representation of what the whole planet looks like,” explained study lead author Chris Moeckel from the University of California, Berkeley, told the publication. On April 15, 2025, as per EarthSky, his team’s findings suggest that the atmosphere becomes well-mixed only much deeper down than previously thought.

Ammonia as a Tracer Beneath the Clouds

Jupiter’s thick cloud cover blocks direct observation, and ammonia acts as a critical tracer to understand the hidden activity beneath the clouds. Scientists theorised in 2020 that Jupiter’s powerful storms lift ammonia-rich ice particles to high altitudes, where they combine with water ice to create a mushy, slushy hailstone. These mushballs then grow larger and heavier, cycling up and down in the atmosphere before plunging deep, carrying ammonia and water with them. This process leaves the upper atmosphere depleted, matching observations from Juno.

Confirmation came during Juno’s February 2017 flyby. While passing over a storm zone, the spacecraft detected an unexpected deep signal rich in ammonia and water beneath the storm clouds. Moeckel recalled spotting the discovery while casually running data on his laptop at a dentist’s office, describing the moment he realised the mushball theory must be true.

A Universal Phenomenon Beyond Jupiter

Researchers now believe that Jupiter might not be unique. Gas giants across the universe and even newly forming planets could experience similar mushball processes. “I won’t be surprised if this is happening throughout the universe,” Moeckel told to LiveScience, suggesting that Jupiter’s stormy secrets may echo far beyond our solar system.

Continue Reading

Science

SpaceX Launches Falcon 9 With 29 Starlink Satellites, Marks Florida’s 100th Space Coast Launch of 2025

Published

on

By

SpaceX’s Falcon 9 achieved Florida’s 100th launch of 2025, carrying 29 Starlink satellites into low Earth orbit. The milestone reflects a surge in launch cadence driven by reusable rockets, satellite constellations, and expanding commercial demand, marking one of the busiest years ever on the Space Coast.

Continue Reading

Science

Webb’s Stunning View of Apep Shows a Rare Triple-Star System Wrapped in Spirals

Published

on

By

Webb’s mid-infrared images of Apep reveal a rare triple-star system producing vast carbon-rich dust spirals from colliding stellar winds. The two Wolf–Rayet stars and a distant supergiant create layered shells that record centuries of activity and enrich the galaxy with elements vital for future stars and planets.

Continue Reading

Science

Study Traces Moon-Forming Impact to an Inner Solar System Neighbour Named Theia

Published

on

By

A new isotopic study reveals that Theia—the Mars-sized body that struck Earth 4.5 billion years ago to form the Moon—likely originated in the inner Solar System, close to Earth’s birthplace. By comparing heavy-element isotope ratios in lunar rocks, Earth samples, and meteorites, researchers found identical signatures, showing both worlds formed from the same inn…

Continue Reading

Trending