Connect with us

Published

on

NASA’s Artemis 2 mission has reached a major milestone as the second stage that powers the Artemis 2 rocket, the Interim Cryogenic Propulsion Stage (ICPS), has been stacked. Kennedy Space Centre in Florida’s technicians mounted the ICPS on top of the SLS rocket inside the Vehicle Assembly Building on May 1. Driven by its upper stage, NASA’s Orion spacecraft and four-person crew—three NASA astronauts and one Canadian—out of Earth orbit will travel a free-return path around the moon, therefore allowing NASA’s return to deep space exploration.

NASA Advances Artemis 2 Moon Mission as Future of SLS and Orion Faces Uncertainty

As per NASA’s announcement, the ICPS arrived at the VAB last month and was hoisted into position inside the rocket stage adapter. The stage is critical for completing the crew’s journey past low Earth orbit during the 10-day Artemis 2 mission. Images shared by NASA show the second stage being lowered into place, while the Orion spacecraft and service module, delivered this week by Lockheed Martin, await integration. Exploration Ground Systems will process the Orion module before joining the rest of the launch vehicle.

Artemis 2 follows Artemis 1, which launched uncrewed in 2022 and revealed issues with Orion’s heat shield that delayed future missions. The Artemis 2 crew will fly a lunar pass rather than enter lunar orbit. The success of the mission will be vital in opening the path for Artemis 3, currently set for 2027, whereupon humans would land on the moon using a SpaceX Starship lander.

Even with continuous development, ambiguity surrounds the long-term fate of the program. A 2026 budget proposal released May 2 suggests ending the SLS and Orion programs after Artemis 3. If enacted, the mission currently under assembly may be among the final uses of the massive launch vehicle, designed to carry humans beyond low Earth orbit.

Artemis 2 is still relentlessly heading towards launch readiness. Though programming objectives are always changing, NASA’s efforts to prepare the SLS and Orion spacecraft highlight a more general aim of maintaining a continuous lunar presence—a step towards eventual Mars exploration.

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending