Connect with us

Published

on

Small-scale ocean features once overlooked are now seen as powerful forces shaping Earth’s climate and marine life. Developed in association with the French space agency CNES, the SWOT (Surface Water and Ocean Topography) satellite caught two-dimensional images of submesoscale waves and eddies about a mile across in a recent NASA-led study. Now clearly seen in before-unheard-of clarity, these currents are essential in moving carbon, nutrients, and heat across the ocean. The high-resolution data of the satellite provides the most comprehensive picture yet of how small-scale vertical currents affect the ecosystems and climatic systems of the world.

NASA SWOT Satellite Discovers Vertical Ocean Currents Driving Climate and Ecosystem Change

As per a recent report from NASA’s Jet Propulsion Laboratory, SWOT revealed how vertical ocean circulation, previously too fine for satellite observation but too broad for ship-based tools, drives exchanges between ocean depths and the atmosphere. “Vertical currents can bring heat from deep layers to the surface, warming the atmosphere,” notes oceanographer Matthew Archer in a statement. SWOT tracked a submesoscale eddy in the Pacific’s Kuroshio Current and measured vertical circulation of up to 14 metres per day, showing how such features help sustain surface ecosystems.

The satellite also observed an internal solitary wave in the Andaman Sea with twice the energy of a typical internal tide, underscoring its ability to estimate energy movement in global waters. Scientists use sea surface height data from SWOT to infer wave slope and fluid pressure, which reveals current speed and the volume of energy or material being transported. “Force is the fundamental quantity driving fluid motion,” explained coauthor Jinbo Wang of Texas A&M University in the blog.

Researchers emphasise SWOT’s role in reshaping ocean modelling. “Now models must adapt to these small-scale features,” denotes JPL’s Lee Fu in the official NASA blog, adding that SWOT data is already being integrated into NASA’s ECCO ocean model. Through continuous monitoring, SWOT is intended to help clarify among environmental changes, ocean-atmosphere interaction, and climate behaviour.

The SWOT mission is a joint project between NASA and CNES, with contributions from CSA and the UK Space Agency, and represents a new era in observing Earth. Its snapshots of the globe every 21 days offer a one-of-a-kind glimpse of how small, dynamic ocean systems help control life and climate on Earth.

Continue Reading

Science

Researchers Unveil How Atomic Entanglement Enhances Light Bursts

Published

on

By

Researchers at the University of Warsaw and Emory University discovered that quantum entanglement between atoms enhances superradiant light bursts. The study reveals how interatomic forces and entanglement boost collective photon emission, providing new design rules for quantum batteries, sensors, and communication systems that can charge or respond much faster.

Continue Reading

Science

Scientists Recreate Cosmic ‘Fireballs’ in Lab to Solve Mystery of Missing Gamma Rays

Published

on

By

Scientists recreated cosmic plasma beams at CERN to study why certain gamma rays vanish in space. The results showed the beams remain stable, suggesting ancient intergalactic magnetic fields, not beam collapse, hide the signals. The discovery provides new insight into cosmic jets and the universe’s earliest magnetic traces.

Continue Reading

Science

Silicon Carbide-Based Motor Drive Enables a Smaller, Lighter Electric Aircraft Engine

Published

on

By

A new silicon carbide-based motor drive for hybrid aircraft engines reduces size and weight while improving efficiency. Tested in a Cessna 337, the inverter allows lighter, more compact electric systems, offering better energy use and cabin space. This innovation could accelerate hybrid aircraft adoption and provide valuable hands-on experience for student engineers.

Continue Reading

Trending