Connect with us

Published

on

Over 80 years, dark matter has been a great mystery for the researchers. Elusive of direct observation, it has made its existence known only by the gravitational impacts it makes on cosmic structures. Even though there is a lot of indirect evidence of its existence, the real nature of dark matter is still unknown. An important attribute of its particle is mass. While past studies have constrained the mass of fermionic dark matter using quantum principles like Pauli’s exclusion principle, bosonic dark matter remained less constrained. In a recent study, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

About the study

According to the study published in Physical Review Letters, the mass of ultralight bosonic dark matter must be more than 2 × 10-21 electron volts (eV), 100 times more than previous estimates using Heisenberg’s uncertainty principle.

The team of researchers, led by the first author of the study, Tim Zimmermann, a Ph.D. candidate at the Institute of Theoretical Astrophysics, University of Oslo, focused their method on the data of Leo II, the Milky Way’s satellite galaxy. It is a dwarf galaxy 1,000 times smaller than the Milky Way. By analyzing the internal motions of stars within Leo II—heavily influenced by dark matter—the team derived 5,000 possible dark matter density profiles using a tool called GRAVSPHERE.

They compared these with profiles generated by quantum wave functions of various dark matter particle masses. If the particle is too light, quantum fuzziness spreads it too thinly, preventing it from forming the observed structures. The study concluded that the dark matter particle must have a mass greater than 2.2 × 10⁻²¹ electron volts (eV)—over 100 times more than previous lower estimates.

Impact on dark matter studies

The findings have significant implications for popular ultralight dark matter models, particularly fuzzy dark matter, which typically proposes particles with masses around 10-22 ev.

Looking ahead, the team plans to extend their methodology to mixed dark matter scenarios, where dark matter is composed of particles with different masses.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 17 Air Said to Be Thinner Than Samsung Galaxy S25 Edge; Battery Capacity Leaked



Home Projector Market to Double In Next 4 Years, South and West Key for BenQ India: Rajeev Singh

Continue Reading

Science

Massive Fireball Streaks Across Southern Japan, Lighting Up the Night Sky

Published

on

By

On Aug. 19, residents of southern Japan witnessed a brilliant fireball streaking across the night sky, lighting up cities from Kagoshima to Osaka. The meteor appeared at 11:08 p.m. local time, glowing green-blue with flashes so bright they rivaled the moon before bursting into orange-red fragments above the Pacific Ocean. Security and dashcam cameras captured the dazz…

Continue Reading

Science

Ursa Major III May Be a Star Cluster, Not a Dark-Matter Dwarf Galaxy

Published

on

By

Astronomers have long thought Ursa Major III, also called UNIONS 1, was a dark-matter-packed dwarf galaxy. But new simulations suggest it may instead be a compact star cluster bound by black holes and neutron stars. Located 30,000 light-years away, Ursa Major III contains just ~60 visible stars yet shows puzzlingly high stellar velocities. The new analysis explains th…

Continue Reading

Science

James Webb Telescope Discovers Tiny New Moon Orbiting Uranus

Published

on

By

A team from the Southwest Research Institute has discovered a tiny new moon orbiting Uranus using NASA’s James Webb Space Telescope. The moon, called S/2025 U1, is just 6 miles (10 kilometers) wide, too small for Voyager 2 to detect during its 1986 flyby. This discovery brings Uranus’s total known moons to 29, with S/2025 U1 orbiting 35,000 miles from the planet…

Continue Reading

Trending