Connect with us

Published

on

Polaris has been the constant guide for explorers and navigators in the northern hemisphere for thousands of years, hence its other name, the famous North Star. It is significant where it is located near the north rotational axis of Earth, and the whole sky appears to spin about it. But that’s not always been the case, and it won’t always be the case. The planet’s sluggish axial wobble, called precession, makes the pole trace a circle about every 26,000 years, bringing different stars into view over the ages.

How Earth’s 26,000-Year Axial Precession Shifts the North Star Over Time

As per NASA, gravitational forces from the sun and moon affect the rotation of Earth; these produce a bulge at the equator and axial precession. Every 26,000 years or so, this wobble makes a complete circle, and it makes the celestial pole move on a cycle, pointing to stars in sequence over time. Thuban, in the star constellation Draco, was the closest visible in the sky to the celestial pole some 4,700 years ago. The stars, such as Kochab and Pherkad, were the nearest to the pole about 3,000 years ago. Polaris now has the title, but not for very long.

The axis of the Earth will eventually change again, bringing new stars into prominence. In about 2,200 years, Errai in the constellation Cepheus will become the North Star. Alderamin, likewise in Cepheus, will have its turn some 5,000 years from now. Deneb, who will approach the pole once more about 9,800 CE, and Vega, a former pole star, returning in roughly 12,000 years, complete this cycle.
Many of these stars fit identifiable constellations, including Cepheus, Draco, and Ursa Minor. Modern stargazing apps incorporating augmented reality for nighttime sky navigation allow amateur astronomers to trace their positions.

As Polaris continues to shine overhead today, its reign is only temporary. Earth’s steady 26,000-year precessional cycle guarantees that other stars will eventually take its place, proving that even in the cosmos, change is constant.

Continue Reading

Science

NASA’s Perseverance May Have Found Its First Meteorite on Mars

Published

on

By

NASA’s Perseverance rover may have discovered its first meteorite on Mars, a 31-inch iron-nickel boulder named Phippsaksla found in Jezero Crater. Its pitted, coral-like texture and unusually high metal content resemble meteorites previously identified by Curiosity, Spirit, and Opportunity. Scientists are now analysing the rock’s composition in detail to determine…

Continue Reading

Science

Dark Matter May Have Been Seen for the First Time in NASA Gamma-Ray Data

Published

on

By

A new analysis of NASA’s Fermi telescope data reveals a faint gamma-ray halo around the Milky Way’s core, matching predictions for annihilating dark-matter particles. Researchers say no known astrophysical source fits the signal, raising the possibility of the first direct evidence of dark matter. Experts, however, stress caution and call for verification in other…

Continue Reading

Science

Boiling Oceans May Hide Beneath Icy Moons, New Study Suggests

Published

on

By

A new study suggests that icy moons such as Mimas and Enceladus may host boiling subsurface oceans triggered by thinning ice shells and falling pressure. This low-temperature boiling could still support life beneath the surface. The research also explains geological features on larger icy moons and strengthens their potential as sites for finding extraterrestrial life…

Continue Reading

Trending