Connect with us

Published

on

A team of U.S.-based astronomers is building a new kind of coronagraph — one powered by quantum mechanics — that could enable direct imaging of Earth-like exoplanets previously considered too faint or too close to their host stars to detect. Traditional telescopes have advanced since Galileo’s time, with instruments like the James Webb Space Telescope (JWST) now capable of analysing distant planetary atmospheres. But even these devices generally are not able to capture images of planets and asteroids that orbit nearby bright stars, as their light is frequently drowned out. Now, a breakthrough could be in sight.

Quantum-Sensitive Coronagraph May Revolutionize Exoplanet Imaging With Sub-Diffraction Precision

As per a recent Space.com report, researchers from the University of Arizona and the University of Maryland have developed a “quantum-sensitive” coronagraph that filters starlight before it reaches the telescope’s detector. By exploiting differences in the spatial modes of photons — how light waves behave in space — the device physically separates planetary light from overwhelming stellar glare. “This method routes photons to different regions before they even hit the sensor,” one co-author explained, emphasising its superiority to digital image processing.

This experimental device uses a “spatial mode sorter”, a series of precision-crafted optical phase masks that redirect light waves from exoplanets, allowing astronomers to view them below the diffraction limit. Normally, achieving this resolution would require telescopes too massive for current spaceflight capabilities. But quantum engineering may bypass that need altogether, provided that light purity — known as mode fidelity — reaches the stringent 1-in-a-billion requirement needed to block star photons while preserving exoplanet signals.

In lab tests, researchers successfully simulated star-planet systems and demonstrated that their system could resolve a dim, Earth-like planet even when positioned one-tenth the distance modern coronagraphs can handle. At higher star-to-planet contrast ratios — up to 1,000:1 — the device maintained accuracy within a few percentage points of theoretical limits, showcasing its potential for space-based observatories.

The technology could augment missions like NASA’s upcoming Habitable Worlds Observatory, designed to detect biosignatures on exoplanets. While scientists caution that the method isn’t a standalone solution, they believe it could dramatically expand the toolkit for planetary discovery. The findings were published on April 22 in Optica.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 16 Pro Max, iPhone 15, MacBook Air (M4) and More Get Discounts During Vijay Sales Apple Days Sale



Trump Threatens 25 Percent Tariffs on Apple If iPhones Not Made in US

Continue Reading

Science

MIT Just Proved Einstein Wrong in the Famous Double-Slit Quantum Experiment

Published

on

By

MIT Just Proved Einstein Wrong in the Famous Double-Slit Quantum Experiment

Physicists at MIT conducted a precise version of the renowned double slit quantum experiment, which challenges Einstein’s objections to quantum mechanics. With the help of ultracold atoms and single photons, they have shown the reaction of the long-standing wave-particle duality discussion without traditional spring setups. The researchers ignored the classical apparatus components and allowed nature’s inherent uncertainty to unleash Bohr’s complementarity, as both wave and particle-like behaviour cannot be observed simultaneously. The finding matches the quantum theory and disagrees with Einstein’s local realistic expectations.

MIT’s Quantum Experiment Challenges Einstein’s Classical View

As per Sci Tech Daily, Einstein argued for the deterministic reality, and claimed that the particles must be definite properties irrespective of the observation and that nothing could travel faster than light. With the Copenhagen interpretation, Bohr held the views which posit that only measurement defines the physical reality, along with complementary properties such as wave and particle behaviour, which are exclusive. The result of MIT supports this interpretation by Bohr.

With the removal of spring elements and the intrinsic quantum uncertain reliability of the ultracold atoms, MIT has sidestepped classical interference artefacts. Through this design, the experiment cleanly isolates the quantum effects and makes the result more robust and vague. Their behaviour demonstrates the dual nature when the individual photons pass through this experiment.

Bohr’s Complementarity Confirmed: Nature Obeys Quantum Rules

The findings through this experiment not only give the mechanical predictions and however, but also reinforce the significance of the theorem by Bell. Experiments done by Delft and Aspect have questioned the inequabilities under restricted conditions, strongly discrediting the hidden variable arguments of Einstein.

In a nutshell, MIT’s ultra double-slit experiment provides compelling evidence against the local realism of Einstein but in favour of the indeterminacy of quantum. Through the demonstration of the complementarity of the minimal classical interference, it is clear that the experiment underscores that nature follows the rules of quantum mechanics.

Continue Reading

Science

PSR J0922+0638 Pulsar Keeps Glitching Every 550 Days, Scientists Are Intrigued

Published

on

By

PSR J0922+0638 Pulsar Keeps Glitching Every 550 Days, Scientists Are Intrigued

PSR J0922+0638 is one of the pulsars, which are typically ultradense remains of a massive star that exploded as a supernova. These are quite compact and lie a few miles away; however, they carry more weight than several other suns. Their density infers that the internal matter is packed tightly, and the borders diverge toward the black hole. However, the collapse of these stars is prevented due to the pressure from the quantum forces. Neutrons and protons smash together at the time of extreme densities, and then they create a single gigantic atomic nucleus. However, the core of the neutron stars is still a mystery.

Unraveling the Structure and Rotation of PSR J0922+0638

As per space report, these dense stars act as giant atomic nuclei together with the neutrons and protons pulled together under the gravity. One of the behaviours of pulsars is their rotation, which is stable. For example, PSR J0922+0638 rotates after every 0.43063, and this continues for thousands of years.

Astronomers studied the data from over 22 years to further understand the stability. The data was collected from South Africa’s MeerKAT array and China’s Nanshan Radio Telescope array. Although the changes were minuscule, even less than a billionth, the stars show an energy shift because of the intense physical forces. The scientists found a dozen glitches that we call a little change in the rate of rotation. The glitches followed a cycle in which rotation repeats after every 550 days.

Glitches, Magnetic Cycles, and the Mystery Within Pulsars

Furthermore, due to sudden glitches, a slow and cyclic speeding up and slowing down of the spin of the pulsar was seen during a 500-600-day period. This behaviour made the scientists question the glitches and the time variations of the pulsar, with the unawareness of the exact cause.

The theories put forward by the scientists comprise the magnetic cycle, which is similar to the movement of the superfluid in the star or the sun. Even after these theories, the internal mechanics of a pulsar are speculative. Further, long-term observations are important to know these secrets.

Continue Reading

Science

Starlink’s Unintended Signals Threaten Astronomical Research, Study Finds

Published

on

By

Starlink’s Unintended Signals Threaten Astronomical Research, Study Finds

Astronomers have concerns over SpaceX’s Starlink connection, as the world is interlinked by the Starlink internet service, but there are big concerns about it. The satellite is interfering with the universe’s observation, and these fears have been confirmed by Curtin University. As per the analysis of 76 million images from the prototype station, it was found that the Starlink satellite emissions affect up to 30 percent images in some datasets. This kind of interference could change the outcome of the research that depends on that data.

Starlink’s Unintended Emissions Threaten Astronomical Research

As per NASA, it was found that from 1,806 Starlink satellites, there occurred 112,000 radio emissions. Further, it was observed that much of the interference is not deliberate. Some satellites detected emitting data in bands in which no signals are present at all. This includes 703 satellites that were identified at 150.8 MHz. This is meant to be protected for radio astronomy, as said by study lead Dylan Grigg.

Grigg observed that these unintended emissions might have come from onboard electronics. Astronomers can’t easily predict or filter these out as they are not part of the intentional signal. The International Telecommunication Union regulate the satellite emissions for protecting astronomical observations, current rules, and focuses on the intentional transmissions and does not address these unintended emissions, as said by Steven Tingay. Executive director of the Curtin Institute of Radio Astronomy.

Calls Grow for Policy Updates to Safeguard Radio Astronomy

The problem is not just the Starlink Satellite; the team found that it currently has the most expansive constellation, including around 7,000 satellites, which can be deployed during the survey. However, the satellite network can release non-deliberate transmissions too.

Tingay said that it is crucial to note that Starlink is not disturbing the current regulations, so there is nothing wrong with it. He further added that we hope this study adds support for the international efforts and updates the policies which control the impact of this technology on the radio astronomy that is currently going on.

Continue Reading

Trending