Connect with us

Published

on

NASA and India’s space agency ISRO are collaborating on a suite of science investigations aboard Axiom Mission 4, a private astronaut mission to the International Space Station set to launch no earlier than June 10 aboard a SpaceX Dragon spacecraft. The mission will carry experiments probing human biology, plant growth, and technology use in microgravity. Investigations include Myogenesis-ISRO (studying muscle stem cells and mitochondrial function), Sprouts-ISRO (growing greengram and fenugreek seeds), Space Microalgae-ISRO (examining nutrient-packed green microalgae growth), Voyager Tardigrade-ISRO (testing tiny water bears in space), and Voyager Displays-ISRO (analyzing astronauts’ use of electronic screens). These studies aim to maintain astronaut muscle and health, support food production in orbit, and improve life-support systems for long-duration missions.

Space Biology: Muscles, Seeds and Algae

According to NASA’s official site, the Sprouts-ISRO investigation will germinate and grow greengram and fenugreek seeds aboard the ISS to study their development, genetics, and nutritional value in microgravity. Myogenesis-ISRO uses human muscle stem cell cultures to examine how spaceflight impairs muscle repair and mitochondrial metabolism, and tests chemicals to bolster muscle health during long missions. Space Microalgae-ISRO studies how green microalgae grow and adapt in microgravity, since rapidly growing, nutrient-packed algae could serve as a fresh food source and help recycle air and water on spacecraft.

Together, these space biology experiments could advance new ways to grow fresh food in orbit, maintain muscle mass during long missions, and even support treatments for muscle loss and nutrition on Earth.

Extremes and Human Factors in Orbit

The Voyager Displays-ISRO experiment examines how crew members interact with tablets and other electronic displays in microgravity, measuring pointing tasks, gaze behaviour, and stress or well-being indicators. Voyager Tardigrade-ISRO carries microscopic water bears (tardigrades) into space, reviving them in orbit and comparing their survival, reproduction, and gene expression to ground controls under cosmic radiation and extreme conditions.

By revealing what makes tardigrades so resilient, scientists hope to uncover ways to protect astronauts on long missions. The display study will guide better user-interface designs for spacecraft and could also benefit touchscreen technology on Earth.

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending