Oshkosh USPS electric mail carrier (Source: Oshkosh)
The Senate version of the repubilcans’ tax bill won’t just add trillions of dollars to the deficit through a massive giveaway to wealthy elites, it will also take the US Postal Service’s awesome new EVs and sell them off for pennies on the dollar, wasting money simply out of spite for vehicles that were already cleaning your air and making your community safer.
The Postal Service has used the same Grumman LLV vehicles for decades, produced from 1986-1994. So, some of these trucks are nearly 40 years old, and all of them are at least 30 years old.
The vehicles are showing their age – they get poor mileage, they break down often (or catch fire, as about 100 of the old gas guzzlers did last year), they emit significant pollution, and they have poor ergonomics.
So, in 2015, the USPS started the process of finding a replacement.
Advertisement – scroll for more content
After many bids and back-and-forth (including startups going out of business), the USPS, led by Postmaster Louis DeJoy, picked Oshkosh’s “Next Generation Delivery Vehicle” (NGDV) as the next postal vehicle.
The vehicle has a goofy look to it, but it’s a goofy look for a reason.
The large window gives exceptional visibility, meaning the kids and pets that are likely to occupy residential areas are easier to see, and thus easier for drivers to avoid.
And the tall roof makes it easier for drivers to enter and exit, reducing strain on their bodies which means lower labor costs overall – less injury, drivers potentially being able to stay in their jobs longer, and so on.
But that’s just talking about the look of the vehicle – there are even more beneficial features, like much more cargo space, driver assistance safety features (around-view cameras, blind spot monitors and collision sensors), and air conditioning, something the original LLVs lacked (and which is only becoming more necessary as the planet heats up).
As for powertrain, the NGDV is available in both gas and electric options, with the gas version getting a paltry 8.6mpg (similar to the old LLVs), but the electric version being naturally much more efficient.
Electrification is a perfect choice for most delivery vehicles. These vehicles do set daily routes with lots of starting and stopping, in neighborhoods where people live and breathe, and return back to the same place every night. It’s an ideal application for EVs, for the vast majority of rotues.
Higher efficiency electric drive means money savings on fuel and maintenance for most routes. Overall, a highly electrified fleet was estimated to save taxpayers $4.3 billion over its lifetime.
But perhaps the most obvious benefit of electric mail trucks is the lack of pollution in the places where people spend most of their time: at home. (I don’t know about you, but my mail carrier’s broken truck stinks up the place every day, forcing me to close the windows as it fails to start half the time – and I’m pretty sure this is a common experience)
Despite these benefits, at first, USPS planned to buy only 10% EVs, with the remainder being gas. But after that announcement, several entities (including Electrek) pointed out that even by USPS’ uncharitable calculations, EVs would save money for the vast majority of routes (and that’s not considering health and environmental benefits).
Thankfully, reason prevailed over time, and the USPS gradually increased its plan such that it eventually said it would buy only electric trucks after 2026, with relatively few gas trucks acquired before then for the few routes that electric isn’t suitable for. It’s also supplementing those purchases with some off-the-shelf Ford E-Transits to function as delivery vehicles, with fewer custom features but an easier rollout as E-Transits are readily available.
The NGDV has suffered delays, but as the truck has finally started to roll out, it’s been enormously popular. When the truck started use last year in Atlanta, drivers immediately loved it. They loved the new features, better safety, and less stress on their bodies.
Republicans move to undo these improvements, wasting taxpayer dollars
And so, of course, republicans are now threatening this unequivocally good thing in a way that’s only going to cost taxpayers more money and ensure that your mail costs, the pollution you breathe in your home and the danger to your neighborhood all increase.
As reported by the Washington Post, Senate republicans are considering a version of the tax bill that would auction off these vehicles, at pennies on the dollar, seemingly simply out of spite for the program.
As usual, republican justifications for the billions of dollars in waste they’re proposing don’t stand up to even the slightest amount of scrutiny.
Kentucky Senator Rand Paul stated that the plan “aims to cut unnecessary costs and focus USPS on delivering mail and not achieving the environmental initiatives pushed by the Biden Administration.”
But Paul ought to know this is false, because he’s part of the Senate, the body that approved these vehicles in the first place in 2022 (and, if you remember your high school civics class as Paul apparently does not, the Senate is not part of the “Biden Administration”). Nor is the USPS directly part of any presidential administration, since it is an independent federal agency, and during the bidding process was headed by Louis DeJoy, who was appointed during one Mr. Donald Trump’s first stint squatting in the White House.
Paul should also know that the bidding process started in 2015, and thus that the majority of it occurred while nobody named Biden was in the White House in the first place.
He also ought to know that most of that money is already spent, and selling off items the USPS already owns for pennies on the dollar doesn’t “save” anyone any money. Neither does having to buy all new gas vehicles, with higher fueling and maintenance costs, to replace them – this is the very definition of “unnecessary costs.”
Worse, falling back to the old LLVs and restarting the bidding process for their replacement would take more time and cause more waste. And in the interim we’d be stuck with these “obsolete” vehicles which, as covered above, are inefficient, unsafe, lack features, and routinely catch fire. All of this gets in the way of the focus on delivering mail.
So, Paul is either lying or stupid, but given the letter after his name, we’re pretty sure it’s both.
The USPS rightly pointed out what a stupid idea this is, stating “The funds realized by auctioning the vehicles and infrastructure would be negligible. Much of infrastructure is literally buried under parking lots, and there is no market for used charging equipment” (hmm, tearing out charging equipment for no benefit at all? where have we heard that before…). It said this action “will seriously cripple our ability to replace an aging and obsolete delivery fleet.”
It further urged the Senate “to pause and consider the substantial harm this proposal would cause to the Postal Service and our customers, your constituents.”
But, given the republican party’s current direction, maybe that exhortation would backfire. Harm seems to be precisely what they want, as reflected in everythingthey’redoingthesedays.
If you do happen to be one of those constituents, particularly in a republican state, it might be worth giving your Senator a call and asking them to stop wasting your money and raising your mail costs by selling off money-saving vehicles that promise to clean the air of your community. Here’s where you can find their contact info.
Among republicans’ proposed cuts is the rooftop solar credit. That means you could have only until the end of this year to install rooftop solar on your home, before republicans raise the cost of doing so by an average of ~$10,000. So if you want to go solar, get started now, because these things take time and the system needs to be active before you file for the credit.
To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – ad*
FTC: We use income earning auto affiliate links.More.
A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.
Anadolu | Anadolu | Getty Images
As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.
But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.
Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.
The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.
“Recycling [of e-waste] hasn’t been taken too seriouslyuntil recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said.
Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.
“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”
With copper, other metals, ‘recycling is going to play huge role’
Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.
Glencore has operated a huge copper smelter in Quebec, Canada, for almost 20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds.
The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.
Stock Chart IconStock chart icon
Price of copper year-to-date 2025.
It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.
Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.
“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.
Massive amounts of e-waste
The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.
In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.
The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.
Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.
“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”
That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.
Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.
Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.
“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.”
China commands 90% of rare earth market
Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.
The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.
The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass.
A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.
Steve Marcus | Reuters
Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.
Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.
Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.
It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.
Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”
Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”
Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.
Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”
LiveWire, the electric motorcycle company that was spun out of Harley-Davidson several years ago, has just shown off two fun-sized electric motorcycles designed to make powered two-wheelers more accessible to new riders, both physically and financially.
The company took to HD Homecoming, a motorcycle festival in Milwaukee, to give a surprise unveiling of the new bikes.
The bikes, which wear what look to be smaller 12″ tires and offer a barely 30″ (76 cm) seat height, are smaller and nimbler than anything we’ve seen from LiveWire before.
But that doesn’t mean they can’t perform. These aren’t some 30 mph (48 km/h) mopeds. LiveWire confirmed that early testing shows respectable performance figures of around 53 mph (85 km/h) speeds and 100 miles (160 km) of range from the pair of removable batteries.
Advertisement – scroll for more content
I’m assuming that range is measured at a lower urban speed, but these appear to be purpose-built to give riders the capability to ride where and how they want at a much more affordable price than LiveWire has ever offered.
Showing off both a trail and a street version, the LiveWire seems to be covering all of its bases.
“The trail model is intended for riding backyards, pump tracks, or even out on the ranch or campgrounds,” the brand explained. “The street model is perfect for urban errands, new riders, mini-moto fans, and anyone looking for a new hobby in the form of a readily customizable, approachable electric moto experience.”
LiveWire hasn’t shared any pricing details yet, and the two models are understood to still be in their development phase, but the advanced stages of the designs mean we likely won’t have to wait too much longer.
And with most of LiveWire’s current electric motorcycle models in the $16k- $17k, these bikes could conceivably cost less than half of that figure, changing the equation for young riders who can’t afford a luxury ride.
Electrek’s Take
Of course, they had to do this unveiling at the exact time that I was banging out a multi-thousand-word treatise bemoaning the fact that LiveWire hadn’t launched any smaller models yet. Hmmm, maybe it’s time for an article about how the e-bike industry needs a single battery standard.
Anyway, I’m all-in on this! I can’t even describe how excited this news makes me! This is an important step for LiveWire’s growth because the kind of folks who are drawn to electric motorcycles are often a different market than that sought by traditional legacy motorcycle manufacturers. LiveWire’s existing models are impressive, both in their extreme performance and their design, but they’re still powerhouses that provide more kick than most riders probably need.
These new mini e-motos could be exactly what new riders are looking for. Consider all the teens and young adults ripping it up on Sur Rons in towns across the US right now. Those Sur Rons aren’t street-legal bikes and they were never meant for the riding they’re most commonly being used for. But a street bike in a fun little Grom form factor like LiveWire is showing off? It could scratch that itch and also provide riders with the safety and support of a motorcycle company that comes from a storied history of over 100 years of motorcycle design, all from a new brand like LiveWire that speaks young riders’ language.
And that trail version – same thing. It’s going to offer the fun off-road riding that so many are looking for, yet do it in a well-designed package that isn’t just produced by some nameless factory in China trying to eke out the best profit margin.
FTC: We use income earning auto affiliate links.More.
Forget fumbling with cables or hunting for batteries – TILER is making electric bike charging as seamless as parking your ride. The Dutch startup recently introduced its much-anticipated TILER Compact system, a plug-and-play wireless charger engineered to transform the user experience for e-bike riders.
At the heart of the new system is a clever combo: a charging kickstand that mounts directly to almost any e‑bike, and a thin charging mat that you simply park over. Once you drop the kickstand and it lands on the mat, the bike begins charging automatically via inductive transfer – no cable required. According to TILER, a 500 Wh battery will fully charge in about 3.5 hours, delivering comparable performance to traditional wired chargers.
It’s an elegantly simple concept (albeit a bit chunky) with a convenient upside: less clutter, fewer broken cables, and no more need to bend over while feeling around for a dark little hole.
TILER claims its system works with about 75% of existing e‑bike platforms, including those from Bosch, Yamaha, Bafang, and other big bames. The kit uses a modest 150 W wireless power output, which means charging speeds remain practical while keeping the system lightweight (the tile weighs just 2 kg, and it’s also stationary).
Advertisement – scroll for more content
TILER has already deployed over 200 charging points across Western Europe, primarily serving bike-share, delivery, hospitality, and hotel fleets. A recent case study in Munich showed how a cargo-bike operator saved approximately €1,250 per month in labor costs, avoided thousands in spare batteries, and cut battery damage by 20%. The takeaway? Less maintenance, more uptime.
Now shifting to prosumer markets, TILER says the Compact system will hit pre-orders soon, with a €250 price tag (roughly US $290) for the kickstand plus tile bundle. To get in line, a €29 refundable deposit is currently required, though they say it is refundable at any point until you receive your charger. Don’t get too excited just yet though, there’s a bit of a wait. Deliveries are expected in summer 2026, and for now are covering mostly European markets.
The concept isn’t entirely new. We’ve seen the idea pop up before, including in a patent from BMW for charging electric motorcycles. And the efficacy is there. Skeptics may wonder if wireless charging is slower or less efficient, but TILER says no. Its system retains over 85% efficiency, nearly matching wired charging speeds, and even pauses at 80% to protect battery health, then resumes as needed. The tile is even IP67-rated, safe for outdoor use, and about as bulky as a thick magazine.
Electrek’s Take
I love the concept. It makes perfect sense for shared e-bikes, especially since they’re often returning to a dock anyway. As long as people can be trained to park with the kickstand on the tile, it seems like a no-brainer.
And to be honest, I even like the idea for consumers. I know it sounds like a first-world problem, but bending over to plug something in at floor height is pretty annoying, not to mention a great way to throw out your back if you’re not exactly a spring chicken anymore. Having your e-bike start charging simply by parking it in the right place is a really cool feature! I don’t know if it’s $300 cool, but it’s pretty cool!
FTC: We use income earning auto affiliate links.More.