Connect with us

Published

on

Astronomers predict an unseen class of star-like bodies called “dark dwarfs” near our galaxy’s center. A new study suggests these objects could shine thanks to annihilating dark matter, not nuclear fusion. Dark matter makes up about a quarter of the universe and interacts via gravity. If WIMP-like dark matter particles collect in a brown dwarf, they would annihilate and heat it, causing a faint glow. Dark dwarfs would be too light to fuse hydrogen, but would keep lithium-7 in their atmospheres, offering a signature. This prediction comes from a JCAP study. The discovery of one could reveal dark matter’s nature.

Predicted Dark Dwarf Properties

According to the paper, sub-stellar objects just below the hydrogen-burning threshold would be powered by dark matter. The authors find that the minimum mass for hydrogen fusion shifts above ∼0.075 M⊙ in dense dark-matter environments, so lighter brown dwarfs instead become stable dark-matter–powered stars (‘dark dwarfs’) via WIMP annihilation inside them. They predict such objects only appear in regions with extremely high dark-matter density, like the Galactic center (ρ_DM ≳ 10^3 GeV/cm^3), because further out the halo is too tenuous. Crucially, dark dwarfs should retain lithium-7 in mass ranges where ordinary brown dwarfs burn it away, providing a clear observational signature.

Observational Prospects and Implications

Sakstein notes that powerful telescopes like the James Webb Space Telescope might even already detect extremely cold objects like dark dwarfs near the galactic center. Alternatively, astronomers could survey brown dwarf populations for a rare sub-class with anomalous lithium content. Notably, even one confirmed dark dwarf would strongly favor heavy, self-annihilating dark matter.

Sakstein explains that finding dark dwarfs would provide “compelling evidence” for dark matter that is massive and interacts with itself – essentially WIMPs or similar particles. He notes that lighter candidates (like axions) would not produce such stars, so a dark dwarf discovery would disfavor those models. While not a proof of WIMPs, a dark dwarf detection would imply dark matter behaves like WIMPs (heavy and weakly interacting). Indeed, future surveys and JWST observations will also test these predictions.

Continue Reading

Science

SpaceX Launches Falcon 9 With 29 Starlink Satellites, Marks Florida’s 100th Space Coast Launch of 2025

Published

on

By

SpaceX’s Falcon 9 achieved Florida’s 100th launch of 2025, carrying 29 Starlink satellites into low Earth orbit. The milestone reflects a surge in launch cadence driven by reusable rockets, satellite constellations, and expanding commercial demand, marking one of the busiest years ever on the Space Coast.

Continue Reading

Science

Webb’s Stunning View of Apep Shows a Rare Triple-Star System Wrapped in Spirals

Published

on

By

Webb’s mid-infrared images of Apep reveal a rare triple-star system producing vast carbon-rich dust spirals from colliding stellar winds. The two Wolf–Rayet stars and a distant supergiant create layered shells that record centuries of activity and enrich the galaxy with elements vital for future stars and planets.

Continue Reading

Science

Study Traces Moon-Forming Impact to an Inner Solar System Neighbour Named Theia

Published

on

By

A new isotopic study reveals that Theia—the Mars-sized body that struck Earth 4.5 billion years ago to form the Moon—likely originated in the inner Solar System, close to Earth’s birthplace. By comparing heavy-element isotope ratios in lunar rocks, Earth samples, and meteorites, researchers found identical signatures, showing both worlds formed from the same inn…

Continue Reading

Trending