Connect with us

Published

on

When NASA’s DART spacecraft smashed into the asteroid moon Dimorphos in 2022, it was more than proof that a kinetic impactor can nudge the orbit of an asteroid. The impact created about 100 large boulders, some of which had greater than three times the spacecraft’s momentum. These high-speed ejecta added unanticipated forces that may complicate future planetary defence efforts. Using data from Italy’s LICIACube—an observer satellite deployed during the mission—a University of Maryland-led team tracked the rocks’ locations and velocities, revealing a complex and potentially disruptive impact legacy.

DART’s Boulder Ejecta Could Disrupt Asteroid Deflection, New Study Warns of Hidden Forces

As per a study in Planetary Science Journal published on July 4, 2025, the team discovered that the boulders weren’t scattered randomly but instead clustered into two clear groups, indicating unknown mechanisms at work. Lead author Tony Farnham noted that this added momentum, largely perpendicular to the spacecraft’s trajectory, might have tilted Dimorphos’ orbit and introduced unpredictable rotation. The largest cluster, travelling southward at shallow angles, likely originated from two larger surface boulders struck moments before the main impact.

Second author Jessica Sunshine explained that DART’s solar panels may have shattered these large boulders, Atabaque and Bodhran, creating chaotic debris patterns. In contrast to NASA’s earlier Deep Impact mission—which hit a dustier target and produced smoother ejecta—DART’s rocky terrain resulted in filamentary structures. The results emphasise how varied the surfaces of asteroids can be and how that variety can affect the practicality of deflection techniques, complicating mission-level planning.

The debris kicked out would transfer momentum, shifting the asteroid’s orientation in space — an aspect that had not been accounted for in previous models. Unaccounted for, these forces may have led to future missions missing their deflection targets. Sunshine emphasised that such subtle forces are critical, likening future planetary defence efforts to “a cosmic pool game” where missing a shot could have planetary consequences.

ESA’s Hera mission, to the Didymos-Dimorphos system in 2026, will demonstrate these predictions and reveal more about the physics of the boulder-flying impact. The need for two points of view is already apparent from the LICIACube data, Farnham stressed. With Hera’s help, researchers aim to refine their models to better prepare for the next real-life asteroid threat.

Continue Reading

Science

SpaceX Launches Falcon 9 With 29 Starlink Satellites, Marks Florida’s 100th Space Coast Launch of 2025

Published

on

By

SpaceX’s Falcon 9 achieved Florida’s 100th launch of 2025, carrying 29 Starlink satellites into low Earth orbit. The milestone reflects a surge in launch cadence driven by reusable rockets, satellite constellations, and expanding commercial demand, marking one of the busiest years ever on the Space Coast.

Continue Reading

Science

Webb’s Stunning View of Apep Shows a Rare Triple-Star System Wrapped in Spirals

Published

on

By

Webb’s mid-infrared images of Apep reveal a rare triple-star system producing vast carbon-rich dust spirals from colliding stellar winds. The two Wolf–Rayet stars and a distant supergiant create layered shells that record centuries of activity and enrich the galaxy with elements vital for future stars and planets.

Continue Reading

Science

Study Traces Moon-Forming Impact to an Inner Solar System Neighbour Named Theia

Published

on

By

A new isotopic study reveals that Theia—the Mars-sized body that struck Earth 4.5 billion years ago to form the Moon—likely originated in the inner Solar System, close to Earth’s birthplace. By comparing heavy-element isotope ratios in lunar rocks, Earth samples, and meteorites, researchers found identical signatures, showing both worlds formed from the same inn…

Continue Reading

Trending