Connect with us

Published

on

A new climate study was just being released that had the potential to brush out the global warming we’re experiencing like so many eraser crumbs on notebook paper, revealing what might be our future if the ambient warming wasn’t part of the equation: much more extreme regional happenings. The model also forecasts Arctic Ocean warming as high as 5°C and intense rainfall strengthening over areas such as the Himalayas, Andes, and eastern Asia. This jump in detail, made possible by high-powered simulations, provides sharper tools to adapt to local climates, plan energy needs, and prepare for disasters — especially in places like small island nations and mountain communities that are already feeling the effects of climate change and rely on cell towers more than landlines.

Supercomputing Climate Model Unveils Regional Extremes Under 1°C Global Warming

As per a report published in Earth System Dynamics, the breakthrough was made by researchers from the IBS Centre for Climate Physics in South Korea and the Alfred Wegener Institute in Germany. They employed the AWI-CM3 Earth system model, running it on South Korea’s top supercomputers to simulate climate conditions at 9 km atmospheric and 4–25 km ocean resolution—far finer than the ~100 km resolution models commonly used by the IPCC.

The weather forecast now takes into account region-specific patterns never studied before: local conditions on islands, types of oceanfront rain, and the way turbulence forms in ocean eddies. Warming is expected to intensify at a rate 45%–60% higher than the global mean in high mountain ranges, including the Hindu Kush and Andes. In Siberian and Canadian Arctic regions, temperatures may rise by about 2°C under a 1°C global average increase.

The researchers also predict increased climate fluctuations. El Niño, La Niña, and the Madden Julian Oscillation (MJO) will increase, and the state of both phenomena will be on a faster track with larger frequency and impact, which will cause a great number of days with heavy rain (rainfall > 50 mm/day). That motion could trigger floods and landslides in heavily populated and environmentally delicate areas.

And for that insight to be actionable, the lab has created an interactive tool that is basically maps of climate projections in the form of data overlaid on Google Earth. These datasets are vital for policymakers who build solar & wind infrastructure & develop disaster response & water management plans in varied geographies.

Continue Reading

Science

NASA Steps In to Support ESA’s Rosalind Franklin Rover Ahead of 2028 Mars Launch

Published

on

By

NASA will deliver crucial hardware, thermal units, landing thrusters, and a U.S. launch vehicle to support ESA’s Rosalind Franklin rover, set for launch in 2028. The rover will drill two meters into Mars to search for ancient life using the advanced Mars Organic Molecule Analyzer instrument.

Continue Reading

Science

Coffee Waste Could Make Concrete Stronger and Greener, Scientists Find

Published

on

By

New research from RMIT University shows that spent coffee grounds can be transformed into biochar and used to replace a portion of sand in concrete, creating a stronger and more sustainable building material. Heating coffee waste at around 350°C without oxygen produces a fine biochar that boosts concrete’s 28-day strength by roughly 30% when used at 15% substitutio…

Continue Reading

Science

Fermi Telescope Detects Gamma-Ray Halo That Could Be First Direct Dark Matter Signal

Published

on

By

NASA’s Fermi Gamma-ray Space Telescope has detected a faint halo of high-energy gamma rays around the Milky Way’s centre—matching predictions for dark-matter annihilation. The finding, reported by Professor Tomonori Totani, could represent the first direct glimpse of dark matter, but scientists caution that alternative explanations remain and independent confirm…

Continue Reading

Trending