Connect with us

Published

on

In a major step forward for sustainable space travel, researchers have been able to successfully grow algae inside biodegradable bioplastic, which mimics the conditions of the extreme Martian environment. The experiment was intended to see how well materials made of polylactic acid could keep conditions habitable on Mars, where the surface pressure is less than 1 percent that of the Earth’s. It’s an important step toward the development of self-sustaining habitats for the human portion of the expeditionary force that require regenerative biological systems instead of expensive resupply missions from Earth.

Algae Thrive in Bioplastic Chambers Under Mars-Like Conditions, Paving Way for Space Habitats

As per a study published in Science Advances, a research team led by Robin Wordsworth of Harvard University demonstrated that the green algae Dunaliella tertiolecta could not only survive but perform photosynthesis inside 3D-printed chambers engineered to replicate Mars’s thin, carbon dioxide–rich atmosphere. The bioplastic chamber also protected the algae from ultraviolet radiation while allowing enough light for biological activity. Liquid water was stabilised using a pressure gradient within the chamber.

The researchers highlighted that bioplastics offer distinct advantages over traditional industrial

materials, which are difficult to recycle or transport in space. Since polylactic acid is derived from natural sources, it could potentially be manufactured or regenerated on-site using algae—establishing a self-sustaining loop. “If you have a habitat that is composed of bioplastic and it grows algae within it, that algae could produce more bioplastic,” Wordsworth noted in a statement.

This latest experiment builds on the team’s earlier work involving silica aerogels that replicated Earth’s greenhouse conditions. By combining algae-based bioplastic systems for material regeneration with aerogels for thermal and atmospheric control, the team sees a viable path forward to long-term extraterrestrial habitation. The chambers’ success under Mars-like conditions reinforces the possibility of using biologically sourced materials to support life beyond Earth.

In future experiments, those systems are to be tested in harsher vacuum conditions, eventually for the benefit of human spaceflight and with spinoff applications on Earth, said Wordsworth, who contends such technology can have spinoff benefits.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy Z Fold 8 Might Not Feature Upgraded Titanium Backplate Included With Galaxy Z Fold 7: Report



NASA’s Twin TRACERS Satellites Will Monitor Space Weather to Shield Earth from Solar Storms

Continue Reading

Science

Hubble Captures Rare Collision in Nearby Planetary System, Revealing Violent Planet Formation

Published

on

By

Astronomers using NASA’s Hubble Space Telescope have witnessed rare collisions between rocky bodies in the Fomalhaut system. The glowing debris clouds created by these impacts offer a unique glimpse into how planets form and highlight challenges in identifying true exoplanets.

Continue Reading

Science

Astronomers Observe Black Hole Twisting Spacetime for the First Time, Confirming Einstein’s Theory

Published

on

By

Astronomers have directly observed a black hole twisting spacetime for the first time, confirming Einstein’s long-standing prediction. The effect was detected during a violent stellar destruction event, where repeating X-ray and radio signals revealed a slow cosmic wobble. The discovery provides new insight into black hole spin, jets, and extreme gravity.

Continue Reading

Science

Scientists Rule Out Elusive Sterile Neutrino After 10-Year Hunt, Shaking Particle Physics

Published

on

By

After ten years of experiments, physicists found no evidence for the sterile neutrino, once thought to explain unusual neutrino behaviour. The MicroBooNE experiment at Fermilab analysed neutrinos from two beams and ruled out the particle with 95% certainty. The findings narrow the search for new physics and inform future experiments like DUNE.

Continue Reading

Trending