DIRKSLAND – Kitepower Testdag. KitePower team making a testrun in the patatofield. – FOTO GUUS SCHOONEWILLE
If you had to read that headline twice, let me assure you: I had to read Kitepower’s website a few times myself. The concept of harnessing the wind for power is positively ancient, but it usually comes in the form of a fixed wind-catching surface rotating a driven mass (aka a windmill). Kitepower is doing something very different. The best way to describe it is probably a “wind winch.”
The Kitepower Hawk — which is now available to order — combines a few key elements. The first is a 400kWh battery pack inside a shipping container, which comprises the storage and distribution portion of the system. That battery array can pump out up to 330kW of power at peak and is designed to run for around 10 hours under typical operating conditions. The second and third major elements are a reel system (think of it as a winch), which releases and retracts a tether, and the aforementioned kite.
The kite is attached to the end of the tether, and as the wind pulls the kite into the air (in an elaborate flight pattern designed to maximize the duration of the “pull” cycle), that pulling force unwinds the reel. The resultant mechanical force, very much like the spinning of a wind turbine, is then harvested as electricity. Finally, the system then uses electricity to pull the kite back in, but in a straight-line trajectory that uses far less power than the pulling force generates.
The key figures claimed here are that the Hawk, at maximum efficiency, generates 40kW of electricity when in the unwind cycle. When the kite is being wound back in, it consumes 10kW of electricity. The system spends roughly 80% of its time in the unwind cycle and just 20% reeling the kite back in, and Kitepower claims the system, therefore, produces the net equivalent of 30kW of continuous power when in operation.
According to Kitepower, the amount of wind necessary to power this whole thing at peak efficiency is lower than you’d expect — just over 22 mph (10 m/s). That said, wind speeds over 30 mph or so start to have a negative effect on system efficiency; 20-30 mph is the “sweet spot.”
The advantages to a system like this may not be totally obvious at first when compared to a traditional wind turbine or solar generator. Isn’t this a whole lot of mechanical complexity and uncertainty to bring into the business of power generation?
Kitepower’s appeal, though, is to the kind of environments where costly and complex wind turbines and solar may be difficult to deploy, or cost-prohibitive. Island communities, remote worksites, and seasonal agriculture are all potential areas where the Hawk could be a game-changer, replacing dirty, noisy diesel generators that must be constantly refueled.
Because of the flight pattern of the kite, you’ll need to be confident that the airspace around the Hawk system will be clear during operation. And the level of wind is obviously going to be a big factor here. But I think the coolest thing about this system is that the portion actually harvesting the energy — the kite — is almost certainly the cheapest of the major components. It’s literally just a fiberglass skeleton parachute, and in the event you lose one to a storm or some other unforeseen event, you can just attach a new kite. I doubt they’re cheap as an objective cost to an individual, but they’re probably way cheaper than replacing an entire wind turbine that gets knocked out in a hurricane.
The other big advantage here is mobility — Kitepower’s system can be deployed anywhere you can drop a shipping container, and that opens a whole host of locations up that would otherwise be cost-prohibitive for wind power generation. Kitepower also isn’t the only name in the game, with German startup EnerKite exploring a similar solution.
This week on Electrek’s Wheel-E podcast, we discuss the most popular news stories from the world of electric bikes and other nontraditional electric vehicles. This time, that includes the launch of the Lectric XP4 e-bike, a new set of RadRunners from Rad Power Bikes, California’s e-bike voucher program hits more hurdles, the effect of Trump tariffs on several e-bike and e-moto companies, and more.
The Wheel-E podcast returns every two weeks on Electrek’s YouTube channel, Facebook, Linkedin, and Twitter.
As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.
After the show ends, the video will be archived on YouTube and the audio on all your favorite podcast apps:
We also have a Patreon if you want to help us to avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.
Here are a few of the articles that we will discuss during the Wheel-E podcast today:
Here’s the live stream for today’s episode starting at 8:00 a.m. ET (or the video after 9:00 a.m. ET):
FTC: We use income earning auto affiliate links.More.
Last month’s bauma event in Germany was so big that the industry hive mind is still trying to digest everything it saw – and that includes these new, rough terrain electric material handlers from Spanish equipment brand AUSA!
AUSA calls itself, “the global manufacturer of compact all-terrain machines for the transportation and handling of material,” and backs that claim up by delivering more than 12,000 units to customers each year. Now, the company hopes to add to that number with the launch of the C151E rough-terrain electric forklift, which takes its rightful place alongside AUSA’s electric telehandler and 101/151 lines of mini dumpers.
The C151 features a 15.5 kWh li-ion battery pack good for “one intense shift” worth of work, sending electrons to a 19.5 kW (approx. 25 hp) electric motor and the associated forks, tilt cylinders, etc. Charging is through a “standard” CCS L1/2 AC port, which can recharge the big electric forklift to 80% in about 2.5 hours.
Looked at another way: even if you drive the battery to nearly nothing, the AUSA can be charged up during a lunch break or shift change and ready to work again as soon as you reach for it.
Advertisement – scroll for more content
AUSA electric forklift charging
The 6,040 lb. (empty) AUSA C151E has a 3,000-pound maximum load capacity and a maximum lift height just over 13 feet.
“It is an ideal tool for working in emission-free spaces such as greenhouses, municipal night works, enclosed spaces, etc.,” reads AUSA’s press material. “It can be used in more applications than a traditional rough terrain forklift, offering greater performance as a result.”
Electrek’s Take
AUSA C151E electric rough terrain forklift; via AUSA.
AUSA’s messaging is spot-on here: because you can use the C151E – in fact, any electric equipment asset – is a broader set of environments and circumstances than a diesel asset, you can earn more work, get a higher utilization rate, and maximize not only your fuel savings, but generate income you couldn’t generate without it.
“More, more, and more” is how a smart fleet operator is looking at battery power right now, and that’s the angle, not the “messy middle,” that the industry needs to be talking about.
Plant workers drive along an aluminum potline at Century Aluminum Company’s Hawesville plant in Hawesville, Ky. on Wednesday, May 10, 2017. (Photo by Luke Sharrett /For The Washington Post via Getty Images)
Aluminum
The Washington Post | The Washington Post | Getty Images
Sweeping tariffs on imported aluminum imposed by U.S. President Donald Trump are succeeding in reshaping global trade flows and inflating costs for American consumers, but are falling short of their primary goal: to revive domestic aluminum production.
Instead, rising costs, particularly skyrocketing electricity prices in the U.S. relative to global competitors, are leading to smelter closures rather than restarts.
The impact of aluminum tariffs at 25% is starkly visible in the physical aluminum market. While benchmark aluminum prices on the London Metal Exchange provide a global reference, the actual cost of acquiring the metal involves regional delivery premiums.
This premium now largely reflects the tariff cost itself.
In stark contrast, European premiums were noted by JPMorgan analysts as being over 30% lower year-to-date, creating a significant divergence driven directly by U.S. trade policy.
This cost will ultimately be borne by downstream users, according to Trond Olaf Christophersen, the chief financial officer of Norway-based Hydro, one of the world’s largest aluminum producers. The company was formerly known as Norsk Hydro.
“It’s very likely that this will end up as higher prices for U.S. consumers,” Christophersen told CNBC, noting the tariff cost is a “pass-through.” Shares of Hydro have collapsed by around 17% since tariffs were imposed.
Stock Chart IconStock chart icon
The downstream impact of the tariffs is already being felt by Thule Group, a Hydro customer that makes cargo boxes fitted atop cars. The company said it’ll raise prices by about 10% even though it manufactures the majority of the goods sold in the U.S locally, as prices of raw materials, such as steel and aluminum, have shot up.
But while tariffs are effectively leading to prices rise in the U.S., they haven’t spurred a revival in domestic smelting, the energy-intensive process of producing primary aluminum.
The primary barrier remains the lack of access to competitively priced, long-term power, according to the industry.
“Energy costs are a significant factor in the overall production cost of a smelter,” said Ami Shivkar, principal analyst of aluminum markets at analytics firm Wood Mackenzie. “High energy costs plague the US aluminium industry, forcing cutbacks and closures.”
“Canadian, Norwegian, and Middle Eastern aluminium smelters typically secure long-term energy contracts or operate captive power generation facilities. US smelter capacity, however, largely relies on short-term power contracts, placing it at a disadvantage,” Shivkar added, noting that energy costs for U.S. aluminum smelters were about $550 per tonne compared to $290 per tonne for Canadian smelters.
Recent events involving major U.S. producers underscore this power vulnerability.
In March 2023, Alcoa Corp announced the permanent closure of its 279,000 metric ton Intalco smelter, which had been idle since 2020. Alcoa said that the facility “cannot be competitive for the long-term,” partly because it “lacks access to competitively priced power.”
Century stated the power cost required to run the facility had “more than tripled the historical average in a very short period,” necessitating a curtailment expected to last nine to twelve months until prices normalized.
The industry has also not had a respite as demand for electricity from non-industrial sources has risen in recent years.
Hydro’s Christophersen pointed to the artificial intelligence boom and the proliferation of data centers as new competitors for power. He suggested that new energy production capacity in the U.S., from nuclear, wind or solar, is being rapidly consumed by the tech sector.
“The tech sector, they have a much higher ability to pay than the aluminium industry,” he said, noting the high double-digit margins of the tech sector compared to the often low single-digit margins at aluminum producers. Hydro reported an 8.3% profit margin in the first quarter of 2025, an increase from the 3.5% it reported for the previous quarter, according to Factset data.
“Our view, and for us to build a smelter [in the U.S.], we would need cheap power. We don’t see the possibility in the current market to get that,” the CFO added. “The lack of competitive power is the reason why we don’t think that would be interesting for us.”
While failing to ignite domestic primary production, the tariffs are undeniably causing what Christophersen termed a “reshuffling of trade flows.”
When U.S. market access becomes more costly or restricted, metal flows to other destinations.
Christophersen described a brief period when exceptionally high U.S. tariffs on Canadian aluminum — 25% additional tariffs on top of the aluminum-specific tariffs — made exporting to Europe temporarily more attractive for Canadian producers. Consequently, more European metals would have made their way into the U.S. market to make up for the demand gap vacated by Canadian aluminum.
The price impact has even extended to domestic scrap metal prices, which have adjusted upwards in line with the tariff-inflated Midwest premium.
Hydro, also the world’s largest aluminum extruder, utilizes both domestic scrap and imported Canadian primary metal in its U.S. operations. The company makes products such as window frames and facades in the country through extrusion, which is the process of pushing aluminum through a die to create a specific shape.
“We are buying U.S. scrap [aluminium]. A local raw material. But still, the scrap prices now include, indirectly, the tariff cost,” Christophersen explained. “We pay the tariff cost in reality, because the scrap price adjusts to the Midwest premium.”
“We are paying the tariff cost, but we quickly pass it on, so it’s exactly the same [for us],” he added.
RBC Capital Markets analysts confirmed this pass-through mechanism for Hydro’s extrusions business, saying “typically higher LME prices and premiums will be passed onto the customer.”
This pass-through has occurred amid broader market headwinds, particularly downstream among Hydro’s customers.
RBC highlighted the “weak spot remains the extrusion divisions” in Hydro’s recent results and noted a guidance downgrade, reflecting sluggish demand in sectors like building and construction.