Connect with us

Published

on

Physicists have recently observed an unexpected phenomenon in a superconducting material, potentially pushing the boundaries of what’s possible in this field. The discovery centres on a material typically known as an electrical insulator. In this insulator, researchers found that electrons could pair up at temperatures as high as minus 123 degrees Celsius (minus 190 degrees Fahrenheit). This finding could pave the way toward achieving superconductors that work at room temperature, a long-sought goal in physics.

The Unexpected Electron Pairing

In this compound, known as neodymium cerium copper oxide, scientists noticed something unusual. When exposed to ultraviolet light, instead of losing a lot of energy as expected, the material retained more energy due to the electron pairs resisting disruption. This behavior was seen up to temperatures of 150 Kelvin, much higher than what is typically observed in such materials. Normally, these types of materials haven’t been studied much due to their low superconducting temperatures, but this new discovery is shifting perspectives.

Implications for Future Research

This electron pairing is a significant clue that could lead researchers closer to developing room-temperature superconductors, as per a research paper published in the journal Science. While the material studied doesn’t reach room temperature itself, the mechanisms behind this behavior could help in the search for materials that do. Understanding why these electrons are pairing at such high temperatures could unlock new methods for synchronizing these pairs, potentially enabling superconductivity at much higher temperatures.

The Role of Cooper Pairs

Known as Cooper pairs, the paired electrons in superconductors, follow unique quantum mechanical rules. Unlike single electrons, these pairs act like particles of light, allowing them to occupy the same space simultaneously. When enough Cooper pairs form, they create a superfluid that conducts electricity without resistance. This behavior is essential for superconductivity, and understanding how to encourage it at higher temperatures is crucial for future advancements.

Looking Ahead

The researchers plan to continue studying this phenomenon to uncover more about the pairing gap and explore ways to manipulate materials to achieve synchronised electron pairs, according to a statement made by co-author of the research paper, Ke-Jun Xu.

This discovery may not immediately yield a room-temperature superconductor, but it offers valuable insights that could guide future breakthroughs in the field. By focusing on these new findings, scientists hope to move closer to the dream of superconductors that work at room temperature, which would revolutionise technology and energy use.

Continue Reading

Science

Astronomers Spot Nearly Perfect Supernova Remnant of Unknown Size and Distance

Published

on

By

Astronomers Spot Nearly Perfect Supernova Remnant of Unknown Size and Distance

Glowing faintly on the Milky Way’s outskirts, astronomers have found a nearly perfect spherical relic of a supernova, challenging accepted knowledge of stellar explosions. Apart from its terrible symmetry, the orb, G305.4–2.2 or “Telios”—Greek for “perfect”—is confusing in terms of size and distance. Captured on radio pictures from the Australian Square Kilometre Array Pathfinder (ASKAP), the object might be either remarkably young or old. Its remarkable shape raises fundamental questions about how such near-perfect remnants form, especially given the chaotic nature of typical stellar deaths.

Astronomers Find Rarely Symmetrical Supernova Remnant in Milky Way Outskirts

As per a recent study published on the preprint server arXiv and accepted by Publications of the Astronomical Society of Australia, Telios was detected during the Evolutionary Map of the Universe project. Most supernova remnants (SNRs) have spheroidal shapes, none close to the smooth circular extremity of this record-holding SNR. “This object is circularly symmetric, indicating that it is one of the most circular galactic SNRs ever seen,” the authors mentioned.

Telios’ unusual symmetry is paired with extremely low brightness, making it difficult to pinpoint its distance or dimensions. Ranging from 45.6 to 156.5, it lets astronomers pin down that it could be anywhere from 7,170 to 25,101 light-years away from us. Its position below the galactic plane, in the thin disc of the galaxy where very few stars live, adds another layer of complexity. Its symmetric shape indicates a recently born neutron star, albeit with fainter light, supporting two other possibilities: an old, slowing-down neutron star or a young one that hasn’t lost its initial shape.

Though the source of Telios is yet unknown, astronomers choose Type Ia supernovae, explosions from less massive stars with a more constant force. Starting from more massive red giants, these are not as far-off or as lovely in quality as core-collapse supernovae. That notion is called into doubt, though, by the absence of a recognised parent star. Although the Type Ia scenario was recommended without direct data, the writers actively argued for more high-resolution studies.

Continue Reading

Science

Planet Moving Backwards Found in Binary Star System Nu Octantis

Published

on

By

Planet Moving Backwards Found in Binary Star System Nu Octantis

A binary star system is a pair of stars gravitationally bound and orbiting a common centre of mass. In 2004, David Ramm at the University of Canterbury in New Zealand spotted a mysterious repeating signal while observing the motion of a pair of stars in a system called Nu Octantis. The signal hinted that a massive planet, twice Jupiter’s size, might exist in that system. In a new study, a small group of astronomers used improved measuring devices to confirm the planet’s existence and explain how the system can remain stable.

Retrograde motion of the planet

According to the study, new data from the HARPS spectrograph at the European Southern Observatory, the main star in the system is a sub-giant. The smaller star, a white dwarf, and the planet both orbit the larger star. But, oddly enough, they go around the star in opposite directions. These reversed trajectories reduce the risk of gravitational disruption and make the system stable.

The planet’s signal has remained consistent for more than 20 years, which strongly suggests it is not caused by stellar activity. According to Man Hoi Lee, co-author of the study, researchers are pretty sure about the planet’s existence. This highlights how long-term stability in the data supports the existence of this strange planet with a tight but stable path through the binary system.

Origin of the planet

There are two possibilities: the planet either used to orbit both stars at once but then radically shifted trajectory when one of the two stars became a white dwarf, or it was formed from the mass that the star ejected as it transformed into a white dwarf. Future observations and a lot more mathematical modelling may be able to pinpoint which of these scenarios is more likely to have occurred, but both are rather novel.

Continue Reading

Science

Quantum Tech Could Finally Let Astronomers Snap Direct Images of Earth-Like Exoplanets

Published

on

By

Quantum Tech Could Finally Let Astronomers Snap Direct Images of Earth-Like Exoplanets

A team of U.S.-based astronomers is building a new kind of coronagraph — one powered by quantum mechanics — that could enable direct imaging of Earth-like exoplanets previously considered too faint or too close to their host stars to detect. Traditional telescopes have advanced since Galileo’s time, with instruments like the James Webb Space Telescope (JWST) now capable of analysing distant planetary atmospheres. But even these devices generally are not able to capture images of planets and asteroids that orbit nearby bright stars, as their light is frequently drowned out. Now, a breakthrough could be in sight.

Quantum-Sensitive Coronagraph May Revolutionize Exoplanet Imaging With Sub-Diffraction Precision

As per a recent Space.com report, researchers from the University of Arizona and the University of Maryland have developed a “quantum-sensitive” coronagraph that filters starlight before it reaches the telescope’s detector. By exploiting differences in the spatial modes of photons — how light waves behave in space — the device physically separates planetary light from overwhelming stellar glare. “This method routes photons to different regions before they even hit the sensor,” one co-author explained, emphasising its superiority to digital image processing.

This experimental device uses a “spatial mode sorter”, a series of precision-crafted optical phase masks that redirect light waves from exoplanets, allowing astronomers to view them below the diffraction limit. Normally, achieving this resolution would require telescopes too massive for current spaceflight capabilities. But quantum engineering may bypass that need altogether, provided that light purity — known as mode fidelity — reaches the stringent 1-in-a-billion requirement needed to block star photons while preserving exoplanet signals.

In lab tests, researchers successfully simulated star-planet systems and demonstrated that their system could resolve a dim, Earth-like planet even when positioned one-tenth the distance modern coronagraphs can handle. At higher star-to-planet contrast ratios — up to 1,000:1 — the device maintained accuracy within a few percentage points of theoretical limits, showcasing its potential for space-based observatories.

The technology could augment missions like NASA’s upcoming Habitable Worlds Observatory, designed to detect biosignatures on exoplanets. While scientists caution that the method isn’t a standalone solution, they believe it could dramatically expand the toolkit for planetary discovery. The findings were published on April 22 in Optica.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 16 Pro Max, iPhone 15, MacBook Air (M4) and More Get Discounts During Vijay Sales Apple Days Sale



Trump Threatens 25 Percent Tariffs on Apple If iPhones Not Made in US

Continue Reading

Trending