Connect with us

Published

on

Extreme heat waves are not only a growing threat to humans but also to vital pollinators like bumble bees. A recent study published in the Proceedings of the Royal Society B reveals that heat waves can significantly impair bumble bees’ ability to detect the scents of flowers they depend on for food. This discovery raises concerns about the potential impact of climate change on bee populations and the agricultural industries that rely on them.

Impact of Heat on Bumble Bee Physiology

Coline Jaworski, a field ecologist at France’s National Institute for Agricultural, Food and Environmental Research, told Science.org that heat waves have a clear effect on bumble bee physiology. If these bees struggle to find their food sources, the consequences could reportedly be severe for crops that depend on their pollination. Without successful pollination, seeds won’t form, leading to a decline in plant reproduction, which could have disastrous outcomes for food supply chains.

Bumble bees play a crucial role in pollinating various crops that contribute to about one-third of the global food supply. Despite their importance, bee populations have been on a steady decline, primarily due to habitat loss and climate change. Last year, the planet experienced record-breaking heat, and such conditions are becoming more frequent, correlating with the ongoing decline in bee populations, as per the study.

How Rising Temperatures Affect Bumble Bees

Bumble bees rely on their eyesight to locate flower patches and use their antennae to detect the scent of the most suitable flowers. Receptors in their antennae pick up scent molecules, which are then transmitted as electrical signals to their brains, helping them decide which flowers to visit. Sabine Nooten, an insect ecologist at Julius Maximilians University of Würzburg, told the publication how rising temperatures affect this vital process in bumble bees.

Nooten and her team reportedly conducted experiments on 190 bumble bees from two species commonly found in Europe: Bombus pascuorum and Bombus terrestris. They exposed the bees to a simulated heat wave by placing them in a tube where the temperature was raised to 40°C for nearly three hours, as per Science.org. Afterward, the team removed the bees’ antennae and tested their electrical responses to three common flower scents: ocimene, geraniol, and nonanal.

The Long-Lasting Effects of Heat Exposure

The results showed that heat exposure significantly reduced the bees’ antennal responses to these scents, sometimes by as much as 80 percent. Sandra Rehan, a molecular ecologist at York University, commented on the importance of this study, noting that 40°C is within the range of temperatures currently experienced in many parts of the world.

Worryingly, most of the heat-exposed bees’ antennae failed to recover their ability to detect scents, even after a 24-hour recovery period in cooler conditions. This suggests that the damage caused by heat waves could have long-lasting effects on bumble bees’ ability to forage effectively.

The study also found that the wild species B. pascuorum was less resilient to heat compared to B. terrestris. Additionally, female worker bees, which are responsible for gathering food for their colonies, appeared more vulnerable to heat exposure than male bees.

Implications for Future Research and Pollinator Health

Future research should explore whether other bee species and pollinators, such as hoverflies, suffer similar heat-induced damage. Jaworski warns that some solitary pollinators, like the carpenter bee, might be at even greater risk. These insects do not have the advantage of stored food in colonies and could face devastating consequences if they are unable to forage effectively due to extreme heat.

This research highlights the pressing need to understand and address the impacts of climate change on vital pollinators, as their decline could have far-reaching effects on global food security.

Continue Reading

Science

Catch the Beaver Moon on Nov 15, 2024 – the year’s last supermoon!

Published

on

By

Catch the Beaver Moon on Nov 15, 2024 - the year's last supermoon!

The final supermoon of 2024, known as the Beaver Moon, will make its appearance on Friday, November 15. This full moon, which will reach its peak illumination at 4:29 PM EST, is anticipated by lunar enthusiasts as it marks the last supermoon event of the year. Visible as dawn approaches in Jakarta, this celestial event follows October’s Hunter’s Moon and concludes a sequence of four consecutive supermoons observed throughout 2024, according to NASA.

What is the Beaver Moon?

November’s full moon is traditionally called the Beaver Moon, a term that originates from Native American customs and was popularised by the Maine Farmer’s Almanac. This name is linked to the seasonal timing when beavers prepare their dens for winter or were historically hunted to ensure a supply of warm furs. In various regions, November’s full moon is also known as the Frost Moon or Snow Moon, reflecting the colder weather patterns typically seen in North America during this time.

When to See the Beaver Moon

The Beaver Moon will appear full to viewers for three days, from the early hours of 14 November to just before sunrise on November 17. This gives stargazers multiple opportunities to catch a glimpse of the bright, enlarged moon, which will be slightly closer to Earth than usual, enhancing its size and brightness compared to typical full moons. This phenomenon occurs when the moon reaches its closest orbital point, known as perigee, during a full phase, resulting in what is known as a supermoon.

Other Astronomical Highlights This Month

Apart from the Beaver Moon, November brings other notable astronomical events. On 16 November, Mercury will reach its greatest eastern elongation, making it ideal for evening observation. Additionally, the Leonid meteor shower is expected to peak from November 17 to 18, providing another highlight for skywatchers. Uranus will also be visible, reaching its closest point to Earth on November 17, according to Seasky.org, giving viewers a brighter and more accessible sighting.

For those interested in astronomy, November 15 offers a special chance to observe this year’s last supermoon before the seasonal Cold Moon arrives in December.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kanguva OTT Release Date Reportedly Revealed: Here’s Everything You Need to Know



Vivo Y300 5G India Launch Date Announced; Rear Design, Colours Revealed

Continue Reading

Science

Scientists Discover New Electric Field in Earth’s Atmosphere

Published

on

By

Scientists Discover New Electric Field in Earth’s Atmosphere

A faint electric field has been detected in Earth’s atmosphere, confirming a theory that scientists have held for decades. This ambipolar electric field, though weak at just 0.55 volts, could play a vital role in shaping Earth’s atmospheric evolution and its ability to support life, according to recent findings. Glyn Collinson, an atmospheric scientist at NASA’s Goddard Space Flight Center, led the Endurance rocket mission, which successfully measured this field in May 2022 above Svalbard, Norway. Collinson has described this field as a “planetary-energy field” that had eluded scientific measurement until now.

How the Ambipolar Field Affects Earth’s Atmosphere

The presence of this field is thought to explain a phenomenon observed decades ago—the polar wind. When sunlight strikes atoms in the upper atmosphere, it can cause negatively charged electrons to break free and drift into space, while the heavier, positively charged oxygen ions remain. To maintain an electrically neutral atmosphere, a faint electric field forms, tying these particles together and preventing electrons from escaping. This weak field has been shown to provide energy to lighter ions, such as hydrogen, enabling them to break free from Earth’s gravity and contribute to the polar wind.

This ambipolar electric field could have implications for planetary habitability. David Brain, a planetary scientist at the University of Colorado Boulder, noted that understanding how such fields vary across planets could shed light on why Earth has remained habitable compared to planets like Mars and Venus. Although both Mars and Venus have electric fields, the absence of a global magnetic field on those planets allowed more of their atmospheres to escape into space, potentially altering their climates significantly.

Further Research Planned

NASA has recently approved a follow-up mission with a rocket named Resolute, expected to launch soon. Collinson believes that continued investigation into planetary electric fields may help answer fundamental questions about why Earth supports life while other planets do not.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Dying Light 2, Like a Dragon: Ishin!, GTA 5 and More Join PS Plus Game Catalog in November



The Rana Daggubati Show to Premiere on Prime Video on November 23

Continue Reading

Science

Amber Found in Antarctica for the First Time

Published

on

By

Amber Found in Antarctica for the First Time

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Trending