Connect with us

Published

on

On September 8, the European Space Agency (ESA) will witness a rare event as the first of four Cluster satellites, named “Salsa”, re-enters Earth’s atmosphere. This satellite, launched as part of ESA’s Cluster mission, will burn up in an uncontrolled yet targeted reentry over a remote part of the South Pacific Ocean. The event presents a unique opportunity for scientists to observe and gather critical data on satellite reentry, contributing to safer and more sustainable practices in future space missions.

Understanding Satellite Reentry

According to a report by ESA, in nearly 70 years of space exploration, about 10,000 intact satellites and rocket bodies have reentered Earth’s atmosphere. Despite this, scientists still have limited understanding of the exact dynamics that occur during reentry. To bridge this knowledge gap, ESA, in collaboration with Astros Solutions, will conduct an airborne observation experiment during Salsa’s reentry.

A team of scientists aboard a small plane will attempt to collect data on the satellite’s breakup process, which will be invaluable for designing and operating future satellites to ensure they can be safely and efficiently disposed of after their missions.

The Importance of Salsa’s Reentry

According to Holger Krag, Head of Space Safety at ESA, understanding reentry dynamics is crucial for maintaining clean and safe orbital paths around Earth. He explains that the quick removal of defunct satellites is vital to prevent space debris accumulation. The reentry of the Cluster satellites, starting with Salsa, offers a repeatable experiment due to the nearly identical conditions under which each satellite will reenter the atmosphere. This scenario allows scientists to observe and compare the outcomes of different reentry angles and conditions, providing insights that will inform the design of future missions.

Targeting the South Pacific Ocean

In January, Salsa’s orbit was adjusted to ensure that its reentry would occur over one of the most remote regions on Earth, the South Pacific Ocean. Bruno Sousa, Cluster Operations Manager, notes that Salsa’s orbit brings it close to Earth every 12 years. This year’s close approach allowed for a targeted reentry, with the spacecraft’s trajectory adjusted to ensure that any surviving fragments fall into open waters, minimizing the risk to populated areas.

Preparing for the Airborne Observation

The airborne observation mission, known as ROSIE-Salsa, involves a joint effort from academic institutions such as the University of Stuttgart and the University of Southern Queensland, alongside industrial partners like Hypersonic Technology Göttingen and Astros Solutions. Led by Jiří Silha, CEO of Astros Solutions, the mission aims to capture real-time data during Salsa’s reentry.

The plane will be equipped with over 20 scientific instruments, including cameras and spectrographs, to observe the satellite’s breakup and record detailed information. Despite the challenges posed by the reentry’s unpredictable nature and the remote location, the team is prepared to gather critical data that could enhance future satellite reentry predictions.

Looking Ahead

Salsa’s reentry marks the beginning of a series of controlled reentries for the remaining Cluster satellites, with the last one scheduled for 2026. ESA’s commitment to reducing space debris is further demonstrated by its Zero Debris approach, which aims to eliminate the creation of space debris by 2030.

In addition to the Cluster mission, ESA is also planning the DRACO mission, which will involve an actively controlled reentry of a satellite equipped with a “black box” to provide telemetry data from within. If successful, this mission could set a new standard for satellite reentry observations and contribute significantly to the safe and sustainable use of space.

Continue Reading

Science

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

Published

on

By

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

The NASA-ISRO Synthetic Aperture Radar (NISAR) satellite, a joint Earth science mission, is now set for launch from India’s Satish Dhawan Space Centre. The pickup-truck-sized spacecraft was encapsulated in the nose cone of an Indian Geosynchronous Satellite Launch Vehicle and is scheduled to lift off on Wednesday, July 30 at 8:10 a.m. EDT (5:40 p.m. IST). Once in orbit, its dual-frequency radars will circle Earth 14 times a day, scanning nearly all of the planet’s land and ice surfaces every 12 days. It will provide data to help scientists monitor soil moisture and vegetation, and better assess hazards like landslides and floods.

International Collaboration and Launch Readiness

According to the official website, NISAR reflects a significant NASA–ISRO partnership. NASA’s Jet Propulsion Laboratory (JPL) built the long-wavelength L-band radar, and India’s Space Applications Centre built the shorter-wavelength S-band radar. This dual-frequency design makes NISAR the first Earth satellite to carry two radar systems, underscoring the mission’s unique collaboration.

The spacecraft is now integrated into its launch vehicle at India’s Satish Dhawan Space Centre. On July 28 NASA announced NISAR had been encapsulated in the payload fairing of an ISRO Geosynchronous Satellite Launch Vehicle on the pad. The GSLV is scheduled to lift off at 8:10 a.m. EDT (5:40 p.m. IST) on Wednesday, July 30.

Advanced Dual-Frequency Radar

NISAR carries a novel dual-frequency radar system. The satellite’s instruments operate at L-band (25 cm) and S-band (10 cm) wavelengths. The longer L-band waves can penetrate forests and soil to sense moisture and land motion, while the shorter S-band waves pick up fine surface details like vegetation moisture and roughness. This combination lets NISAR detect both large-scale and fine-scale changes.

From orbit, NISAR will circle Earth 14 times per day, scanning nearly all land and ice surfaces twice every 12 days. Its data will track changes like the advance or retreat of polar ice sheets and slow ground shifts from earthquakes, and will also aid agriculture and disaster planning by helping monitor crops and prepare for floods and hurricanes.

Continue Reading

Science

Doomed Exoplanet TOI-2109b Spirals Toward Its Star with Three Possible Fates

Published

on

By

Doomed Exoplanet TOI-2109b Spirals Toward Its Star with Three Possible Fates

The gas giant TOI-2109b is more than five times as massive as Jupiter, and resides in a perilous orbit 870 light-years from our planet. As an “ultrahot Jupiter,” it completes a lap around its parent star in a mere 16 hours, the briefest orbit of any such planet known. It is baking its atmosphere to broiling temperatures, and inching closer to oblivion in an orbit that is slowly pulling it in toward its parent sun. Using archived space telescope data from TESS and Cheops, astronomers have observed the testimony of this inevitable spiral, and contemplated three (wildly divergent) possible fates of the doomed planet.

Fates for TOI-2109b

According to the new research, conducted with data from NASA’s TESS and ESA’s Cheops missions shows that TOI-2109b’s orbit is decaying — a process it will continue for thousands of Earth’s years to come by 10 seconds over three Earth years. This proves that it is in a process of slow in fall. If the decay becomes worse, the planet may start falling directly into its host star and create a luminous flare, just like ZTF SLRN-2020. Alternatively, the star’s tidal forces could permanently warp the planet and rip it asunder.

A Potential Planetary Rebirth

There is a third, less-tragic possibility which could happen through a process of photoevaporation, in which strong radiation from the hosting star removes TOI-2109b’s gaseous envelope to reveal its rocky core. If the planet shrinks quickly enough, it might survive the process, avoiding its destruction by spiraling within its eternal Roche limit, and settling as a super-Earth or Neptune-sized blow-up hard relic. Then TOI-2109b would be an odd, rare opportunity to witness up close how this process unfolds.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung’s Exynos 2600 SoC Listed on Geekbench; Could Power the Galaxy S26 Series



iQOO Z10 Turbo+ Launch Teased; Chipset and Battery Capacity Confirmed

Continue Reading

Science

Hubble Spots Interstellar Invader Comet 3I/ATLAS for the First Time

Published

on

By

Hubble Spots Interstellar Invader Comet 3I/ATLAS for the First Time

The Hubble Space Telescope has taken its initial shots of comet 3I/ATLAS, a comet visiting us from beyond our solar system that recently fell apart — but not before it struck a pose for the cameras. It’s only the third such object ever known, after 1I/ʻOumuamua in 2017 and 2I/Borisov in 2019. The subject of numerous scientific tweets and some frantic searches by astronomers anxious to figure out just what it is — and where it came from — before it is gone into the pitch black of deep space forever, 3I/ATLAS was first sighted by the ATLAS survey telescope on July 1, 2025.

Ancient Interstellar Comet 3I/ATLAS Offers Clues to Planetary Systems Beyond Our Own

According to As per Space.com, recent studies indicate that 3I/ATLAS could be some 7 billion years old, well beyond the 4.6 billion years of our solar system. That’s an indication that the comet arose in the more ancient parts of the Milky Way, which would give researchers a rare glimpse of what the early days of other planetary systems were like. Undergraduate researcher Astrafoxen first flagged the Hubble images on Bluesky, noting the comet’s “nice and puffy” coma, despite interference from cosmic rays.

A newly available preprint paper has already revealed that 3I/ATLAS contains abundant water ice and a dust makeup resembling D-type asteroids—organic-rich bodies typically found in the outer solar system. Unlike ultrared trans-Neptunian objects, D-types are believed to have high carbon and silicate content, potentially shedding light on the comet’s deep-space origins and volatile chemistry.

The comet 3I/ATLAS was discovered just as the Vera C. Rubin Observatory was gearing up to carry out its initial observations of the heavens, dovetailing with the LSST’s expected discovery of many more interstellar objects in the coming decade.

Until then, 3I/ATLAS holds the astronomical spotlight. Its brief solar system passage offers a precious opportunity for researchers to analyse the material makeup of alien planetary systems. The Hubble images, now available for download, are expected to aid future papers as scientists continue to unravel the story of this ancient cosmic traveller.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Microsoft Knew of SharePoint Security Flaw but Failed to Effectively Patch It, Timeline Shows



AppleCare One Subscription Announced; Lets You Add Up to 3 Devices Under One Plan

Continue Reading

Trending