Volvo flew us to Newport Beach, California, to test its new EX90 7-seat AWD SUV. For many people, including my family, this is the holy grail of EVs. It is part electric luxury sports sedan, part four-wheel-drive off-roader and trailer hauler, and most importantly, part minivan.
How well do these come together? Let’s see…
Volvo EX90 appearance
The EX90 is unmistakenly a Volvo with the signature electric closed grill at the front and Thor’s hammer headlights. The rear is more subdued and could be mistaken for a traditional Volvo XC90 or similar. The vehicles they had us in were either sandstone tan or gray which felt stately but muted.
The front hump at the top of the windshield may seem like it is paying homage to London taxis or stealth police vehicles, but it is, in fact, the housing for Volvo’s very high-tech Lidar safety and eventually self-driving system.
There’s also a “Volvo for Life” tagline underneath, proudly displaying Volvo’s commitment to safety. Is it a little much? Perhaps.
Volvo, more than any other carmaker, is proud of its safety features and seems to want to show them off rather than hide them. See also: those yellow 3-point seat belts in other models, which the company invented and shared freely with the rest of the industry. They’ve saved countless lives, and Volvo expects its Lidar system to do the same.
I think the EX90 has the perfect stance between sedan and SUV, allowing for a good ride height for visibility and mild off-roading but not so far off the ground that handling and turns are too compromised.
High marks all around on outward appearance. But is the EX90 just good looks on the outside? Let’s look inward.
We got to sit in two different interiors, a synthetic leather and recycled cloth. Both exuded Volvo’s spartan luxury feel – not cluttered at all but also not Tesla minimalist either. The four main seats were more than comfortable in over three hours of driving and, my word, this vehicle is quiet and smooth. If you aren’t driving, prepare to nod off.
The third row is a little bit of a compromise and you can probably see why the Polestar 3, built on this same platform, only comes in a 5-seat configuration. Jamie at about 6′ tall found it to be quite uncomfortable unless moving the middle row seats up. This would be mostly for children or quick airport or school runs, not for seven adults on a road trip. We later got to see the 6-seat configuration with two middle row captain’s chairs (including armrests ahem Tesla Model X) which made the 3rd row significantly less cramped. I think the 6-seat option is where I’d go on this car.
Even with the 3rd row seats up you have two rows of grocery room in the back and there’s room under the false floor for more permanent items. It is a good thing too because the “frunk” is small and hard to get to (boo!). We’d like to see some smarter packaging up front to enable a deeper, more accessible frunk.
With the 3rd row down, you’ve got some massive storage space and still room for 5 people.
About that second-row middle seat, though: It sits higher, is firmer/less comfortable with a folded armrest in your back, and, to me, is another reason to go with the 6-seat configuration.
The EX90 center stack runs on Android for Automotive, which means you will get a very Google-centric experience. That, in my usage, is fantastic. Volvo, unlike some other automakers, decided to keep access to Apple’s wireless CarPlay open so that you can run iOS over Google’s OS. Many folks will just use the built-in Google Maps, which also shows up on the fantastic heads-up display. Google’s OS has many, if not all, of the apps you’d use on your iPhone, so it becomes a little bit redundant, but Volvo was adamant about giving their customers a choice here.
The 360 camera was solid all around but sometimes made for some interesting interpreted obstacles (see above). Overall, however, it was certainly helpful in navigating close and unfamiliar territory.
The Volvo EX90 Drive
The most unique aspect of the car was the drive performance, and it was certainly rewarding. With its electric motors and insulated interior, the drive was the quietest I can remember taking in recent years. Add to that the smooth, vibration-free feel of the road, comfy and vented seats, and the fantastic assisted handling, and it felt like a $100K+ Mercedes to drive. Torque vectoring brings incredible ease and confidence to curves. Great visibility is confidence-inspiring and inspiring, as is that Lidar-enhanced safety suite.
However, the performance of the motors was somewhat muted. Talking to engineers at the event, they admitted that they softened the acceleration on purpose here, though it isn’t certain if it was for drive quality, keeping parts from wear, or what. Jamie and I both railed on them, noting that their half-the-price EX30 is somehow over a second quicker to 60mph, and it is a better experience to have your foot deciding the speed, not some computer algorithms.
Still, 4.7 seconds 0-60 is respectable, and the Polestar 3, which is the same SPA platform drivetrain (slightly higher 517 hp), is only .2 seconds faster. I think Volvo could do better here but whenever I talk about speed, Volvo comes back with “safety” and I guess I get it.
Depending on what tire size you pick, the EX90 will get you somewhere north of 300 miles of range, which I think is the sweet spot for vehicles like this. Rivian’s R1S offers more range but at much bigger battery/higher price points. Tesla Model X offers more range on paper, but in reality, is often less than 300 miles. Kia’s EV9 is going to be similar.
Bidirectional Charging is a big hit
While this will go under the Lidar (lol) for some, Volvo really amped up the vehicle’s ability to power homes. Rather than the ~2kW many cars have, the Volvo can put out up to 20kW of power, meaning houses connected to the Volvo will even be able to be heated and cooled electrically. Here’s a quick demo of some use cases with a DCBEL system connected to the EX90:
Our fast charging experience was lackluster because we were on a busy Electrify America station but we still got a 185kW output with 30% state of charge. Volvo tells us that we can expect speeds up to and over 250kW at the right stations and it takes about 30 mins to take the battery from 10 to 80% or add about 210 miles.
Volvo EX90 wrap up
Volvo’s South Carolina-built EX90 is a big win in my book. Historically, the Rivian R1S and Tesla’s Model X have owned the third-row EV space. Recent newcomers like the Mercedes EQS SUV/BMW iX/Audi Q8 and, on the value end, the Kia EV9 have shaken up the market a bit. But I love the Volvo EX90 because it blends performance, style, luxury, and ride really well. Priced from $80-90K based on trim and before incentives, it is going to be a popular option in this growing space.
There’s no better test of a vehicle than the “Do I want one?” test. Often after reviewing a car, I’m happy to give it back. In this case the EX90 is something I’m following up on and therefore a big win. As a Rivian R1S owner, I often ask myself if I really need a 3-second 0-60, crazy offroading skills, or the last 100 miles of range, which I almost never use. I’d love captain’s chairs in the 2nd row (though I’d miss the fold flat). Most of all, I’d love the smoother, quieter ride and, most of all, the enhanced safety features that the EX90 offers. Like they say, it is all about safety.
FTC: We use income earning auto affiliate links.More.
A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.
Anadolu | Anadolu | Getty Images
As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.
But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.
Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.
The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.
“Recycling [of e-waste] hasn’t been taken too seriouslyuntil recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said.
Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.
“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”
With copper, other metals, ‘recycling is going to play huge role’
Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.
Glencore has operated a huge copper smelter in Quebec, Canada, for almost 20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds.
The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.
Stock Chart IconStock chart icon
Price of copper year-to-date 2025.
It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.
Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.
“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.
Massive amounts of e-waste
The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.
In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.
The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.
Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.
“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”
That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.
Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.
Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.
“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.”
China commands 90% of rare earth market
Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.
The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.
The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass.
A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.
Steve Marcus | Reuters
Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.
Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.
Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.
It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.
Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”
Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”
Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.
Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”
LiveWire, the electric motorcycle company that was spun out of Harley-Davidson several years ago, has just shown off two fun-sized electric motorcycles designed to make powered two-wheelers more accessible to new riders, both physically and financially.
The company took to HD Homecoming, a motorcycle festival in Milwaukee, to give a surprise unveiling of the new bikes.
The bikes, which wear what look to be smaller 12″ tires and offer a barely 30″ (76 cm) seat height, are smaller and nimbler than anything we’ve seen from LiveWire before.
But that doesn’t mean they can’t perform. These aren’t some 30 mph (48 km/h) mopeds. LiveWire confirmed that early testing shows respectable performance figures of around 53 mph (85 km/h) speeds and 100 miles (160 km) of range from the pair of removable batteries.
Advertisement – scroll for more content
I’m assuming that range is measured at a lower urban speed, but these appear to be purpose-built to give riders the capability to ride where and how they want at a much more affordable price than LiveWire has ever offered.
Showing off both a trail and a street version, the LiveWire seems to be covering all of its bases.
“The trail model is intended for riding backyards, pump tracks, or even out on the ranch or campgrounds,” the brand explained. “The street model is perfect for urban errands, new riders, mini-moto fans, and anyone looking for a new hobby in the form of a readily customizable, approachable electric moto experience.”
LiveWire hasn’t shared any pricing details yet, and the two models are understood to still be in their development phase, but the advanced stages of the designs mean we likely won’t have to wait too much longer.
And with most of LiveWire’s current electric motorcycle models in the $16k- $17k, these bikes could conceivably cost less than half of that figure, changing the equation for young riders who can’t afford a luxury ride.
Electrek’s Take
Of course, they had to do this unveiling at the exact time that I was banging out a multi-thousand-word treatise bemoaning the fact that LiveWire hadn’t launched any smaller models yet. Hmmm, maybe it’s time for an article about how the e-bike industry needs a single battery standard.
Anyway, I’m all-in on this! I can’t even describe how excited this news makes me! This is an important step for LiveWire’s growth because the kind of folks who are drawn to electric motorcycles are often a different market than that sought by traditional legacy motorcycle manufacturers. LiveWire’s existing models are impressive, both in their extreme performance and their design, but they’re still powerhouses that provide more kick than most riders probably need.
These new mini e-motos could be exactly what new riders are looking for. Consider all the teens and young adults ripping it up on Sur Rons in towns across the US right now. Those Sur Rons aren’t street-legal bikes and they were never meant for the riding they’re most commonly being used for. But a street bike in a fun little Grom form factor like LiveWire is showing off? It could scratch that itch and also provide riders with the safety and support of a motorcycle company that comes from a storied history of over 100 years of motorcycle design, all from a new brand like LiveWire that speaks young riders’ language.
And that trail version – same thing. It’s going to offer the fun off-road riding that so many are looking for, yet do it in a well-designed package that isn’t just produced by some nameless factory in China trying to eke out the best profit margin.
FTC: We use income earning auto affiliate links.More.
Forget fumbling with cables or hunting for batteries – TILER is making electric bike charging as seamless as parking your ride. The Dutch startup recently introduced its much-anticipated TILER Compact system, a plug-and-play wireless charger engineered to transform the user experience for e-bike riders.
At the heart of the new system is a clever combo: a charging kickstand that mounts directly to almost any e‑bike, and a thin charging mat that you simply park over. Once you drop the kickstand and it lands on the mat, the bike begins charging automatically via inductive transfer – no cable required. According to TILER, a 500 Wh battery will fully charge in about 3.5 hours, delivering comparable performance to traditional wired chargers.
It’s an elegantly simple concept (albeit a bit chunky) with a convenient upside: less clutter, fewer broken cables, and no more need to bend over while feeling around for a dark little hole.
TILER claims its system works with about 75% of existing e‑bike platforms, including those from Bosch, Yamaha, Bafang, and other big bames. The kit uses a modest 150 W wireless power output, which means charging speeds remain practical while keeping the system lightweight (the tile weighs just 2 kg, and it’s also stationary).
Advertisement – scroll for more content
TILER has already deployed over 200 charging points across Western Europe, primarily serving bike-share, delivery, hospitality, and hotel fleets. A recent case study in Munich showed how a cargo-bike operator saved approximately €1,250 per month in labor costs, avoided thousands in spare batteries, and cut battery damage by 20%. The takeaway? Less maintenance, more uptime.
Now shifting to prosumer markets, TILER says the Compact system will hit pre-orders soon, with a €250 price tag (roughly US $290) for the kickstand plus tile bundle. To get in line, a €29 refundable deposit is currently required, though they say it is refundable at any point until you receive your charger. Don’t get too excited just yet though, there’s a bit of a wait. Deliveries are expected in summer 2026, and for now are covering mostly European markets.
The concept isn’t entirely new. We’ve seen the idea pop up before, including in a patent from BMW for charging electric motorcycles. And the efficacy is there. Skeptics may wonder if wireless charging is slower or less efficient, but TILER says no. Its system retains over 85% efficiency, nearly matching wired charging speeds, and even pauses at 80% to protect battery health, then resumes as needed. The tile is even IP67-rated, safe for outdoor use, and about as bulky as a thick magazine.
Electrek’s Take
I love the concept. It makes perfect sense for shared e-bikes, especially since they’re often returning to a dock anyway. As long as people can be trained to park with the kickstand on the tile, it seems like a no-brainer.
And to be honest, I even like the idea for consumers. I know it sounds like a first-world problem, but bending over to plug something in at floor height is pretty annoying, not to mention a great way to throw out your back if you’re not exactly a spring chicken anymore. Having your e-bike start charging simply by parking it in the right place is a really cool feature! I don’t know if it’s $300 cool, but it’s pretty cool!
FTC: We use income earning auto affiliate links.More.