Connect with us

Published

on

Archaeologists have recently uncovered ten ancient burial mounds, known as kurgans, in Kazakhstan’s Ulytau region. These kurgans, dating to the Middle Ages, include several with a distinctive feature: stone ridges that resemble mustaches. Zhanbolat Utubaev, an archaeologist at the Margulan Institute of Archaeology, led the team that made this fascinating discovery. These so-called “mustached” kurgans are a significant find in the study of medieval Kazakhstan.

Details of the Discovery

The ten kurgans vary in size, with diameters ranging from about 10 to 50 feet (3 to 15 metres), as per the study. Among them, three kurgans are recognised for their mustached appearance due to the unique stone ridges crossing them. One particular kurgan, which does not feature the mustached design, was excavated to reveal the remains of a man buried with a triangular arrowhead. While the exact identity and cause of his death are yet to be determined, further research may provide additional details.

Historical Context

These burial mounds are believed to date from the Middle Ages, a period marked by both settled and nomadic lifestyles in Kazakhstan. Settled communities thrived in cities like Taraz, a key Silk Road hub, while nomadic groups roamed other regions. The newly discovered kurgans might belong to these nomadic groups, predating the Mongol conquests of the 13th century.

Ongoing Research

The Margulan Institute of Archaeology, led by Zhanbolat Utubaev, continues to explore these kurgans. The excavation team’s ongoing research aims to shed light on the customs and lives of the people who built these mounds. Future studies may provide deeper insights into the practices of the Middle Ages and the significance of these intriguing burial sites.

Continue Reading

Science

ESA’s Solar Orbiter Unveils First View of the Sun’s Mysterious South Pole

Published

on

By

ESA’s Solar Orbiter Unveils First View of the Sun’s Mysterious South Pole

The European Space Agency has released an image showing the south pole of the Sun. This image was taken on March 23, 2025, but was revealed yesterday on June 11, 2025. These new images from the Solar Orbiter spacecraft show a view of the Sun that has never been recorded before. Solar Orbiter spent its last months tilting its orbit to 17 degrees underneath the solar equator, bringing the elusive south pole to view, which could never be done before.

Images Found had Visible UV Wavelengths

Carolle Mundell, the director of Science, told Live Science that today, we reveal the first ever views of the Sun’s pole by humankind. The new images caught the solar pole in broader, visible and ultraviolet wavelengths, with the help of three of the Solar Orbiter’s 10 instruments. These caught colourful confetti of the Sun’s data, with fathomable tangles of its magnetic field. It flips with high velocity movement of chemicals and makes up the solar wind.

Flips of the Magnetic Field Due to Solar Activity

According to ESA, these data will provide an understanding of the solar wind, space weather and the 11-year activity of the Sun. Through the measurement of the Solar Orbiter’s Polarimetric and Helioseismic Imager instrument, the Sun can be seen as throwing out flares in overdrive during the period of peak activity.

This mess of magnetic fields is temporary and flips after every 11 years. This signifies the end of the maximum solar activity and the beginning of the transition towards the relative calm of the next solar minimum. Further, after five to six years, when the solar minimum begins, the Sun’s poles show only one type of magnetic polarity.

First Step towards the Sun

With the coming years, there will be many stances for the Solar Orbiter to test further. Through the little help of the gravitational pull of Venus, it will tilt its orbit again from the solar equator to 24 degrees in December 2026, 33 degrees in June 2029. This will help us know the Sun from different regions and, in turn, know about the magnetic field, solar wind and activity.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Realme Narzo 80 Lite 5G India Launch Date Set for June 16



Poco F7 With Snapdragon 8s Gen 4 SoC Surfaces on Geekbench After Company Hints at Imminent Launch

Continue Reading

Science

Hubble Finds Cosmic Dust Coating Uranus’ Moons, Not Radiation Scars

Published

on

By

Hubble Finds Cosmic Dust Coating Uranus’ Moons, Not Radiation Scars

The latest Hubble Space Telescope observations reveal a twist in the story of Uranus’s moons. Rather than the expected radiation “sunburn,” the moons Ariel, Umbriel, Titania and Oberon seem to be literally gathering cosmic dust. It turns out the planet’s odd tilt isn’t scorching their backsides as predicted, but coating the front ends of the two outer moons in a kind of space-grime instead. This result has astronomers scratching their heads, because it’s just the opposite of what they expected under Uranus’s warped magnetic field.

Dust, Not Radiation

According to the data from NASA’s Voyager 2 flyby in 1986 and decades of modelling, scientists assumed Uranus’s sideways spin meant its magnetic field blasted each moon’s trailing side (the “back window”) with charged particles, darkening it. The rear halves were expected to look dull and dark. Instead, Hubble’s ultraviolet data tell a different story: Titania and Oberon (the distant pair) are actually darker on their leading faces – the opposite of what that radiation hypothesis predicted. In other words, the effect isn’t radiation damage at all. Instead, it looks like Uranus’s magnetosphere largely misses these moons.

A Cosmic Windshield Effect

Space dust kicked up by Uranus’s far-flung irregular moons. Micrometeorites constantly pummel those distant satellites, flinging tiny grit inward over millions of years. Titania and Oberon plow through this dust cloud, collecting debris on their forward sides just like bugs on a car’s windshield. This cosmic “bug splatter” coats their leading faces with a slightly darker, reddish tint.

Meanwhile, Ariel and Umbriel ride in the dust shadows of their bigger siblings and look about the same brightness on both sides. Uranus’s big moons have gone through a slow-motion cosmic car wash, dusting their fronts instead of catching a UV burn. In other words, a dusty windshield — not radiation — is painting these moons. It’s a reminder that space can surprise us, sometimes with nothing more exotic than plain old dust.

Continue Reading

Science

New Theory Challenges Black Hole Singularities, But Critics Raise Red Flags

Published

on

By

New Theory Challenges Black Hole Singularities, But Critics Raise Red Flags

A recent effort to do away with singularities — the infinitely dense points believed to be at the heart of black holes — has reignited debate among physicists. Now, a team led by Robie Hennigar of Durham University suggests a new model that has gravity undergoing a different type of behaviour at the extreme limits and replaces the singularity of the black hole with a small, compact core that always remains static and very strongly curved. The modified Einstein’s equations, representing general relativity, have been generalised, and higher-dimensional effects are incorporated. Although the discoveries garnered attention for perhaps explaining a fundamental cosmic paradox, critics have mentioned that the model has no experimental underpinning and is based on overly speculative mathematical concepts.

Critics Challenge 5D Gravity Theory Aimed at Replacing Black Hole Singularities Without Evidence

As per a Space.com report, Hennigar’s theory introduces modified gravity in five dimensions, which some scientists argue goes beyond what current observations allow. Nikodem Poplawski, a physicist at the University of New Haven in Connecticut, pointed out three things that stood out to him: there is no experimental evidence for extra dimensions, the current study only assumes a static black hole interior, and the model uses an infinite series of mathematical terms that don’t have any physical justification.

Poplawski stressed that changing general relativity without experimental evidence makes the model more of a theoretical curiosity than a real physical theory. He also highlighted the fact that black hole interiors, according to conventional field equations, should not be static. He further stated that just changing equations to get rid of singularities doesn’t fix the physics behind them; it can only hide it behind complicated mathematics.

Hennigar’s team used modified gravity to deal with the singularity, but scientists say that general relativity and quantum mechanics should be combined. The problems with string theory, however, include features such as dimensions that have never been fixed and supersymmetric particles that have never been detected.

Poplawski concurs that investigating mathematics may be fruitful and also hopes that bold ideas, such as the notion that black holes spawn new universes, may prove profitable in the future.

Continue Reading

Trending