Connect with us

Published

on

NASA and NOAA have confirmed that the Sun has entered its solar maximum phase, the most active part of its 11-year cycle. During this period, the Sun becomes more volatile, and an increase in solar storms and activity can have various effects on Earth and space. Solar maximum marks a peak in sunspot numbers, leading to frequent solar eruptions and changes in space weather.

Impact of Solar Maximum on Earth

According to Jamie Favors, Director of NASA’s Space Weather Programme, the heightened solar activity provides unique insights into the Sun’s behaviour but also impacts Earth. These solar events can disrupt satellite operations, astronauts in space, as well as GPS and communication systems. The increased solar storms also create a greater likelihood of geomagnetic events on Earth, like the auroras seen in recent months.

Recent Solar Activity and Future Predictions

In May 2024, NASA’s Solar Dynamics Observatory recorded one of the most intense solar storms in two decades. This solar flare activity peaked with an X9.0 flare, the most powerful so far in this cycle. However, as Elsayed Talaat, NOAA‘s Director of Space Weather Operations, pointed out, the exact peak of the solar maximum phase will only be confirmed after observing a decline in activity. Current forecasts suggest this period of high activity could last another year.

Space Weather Research and Future Missions

NASA and NOAA continue to study the Sun’s effects, with upcoming missions set to explore space weather. Notably, NASA’s Parker Solar Probe will make its closest approach to the Sun in December 2024, gathering unprecedented data on solar activity. This research is crucial for the success of space missions like NASA’s Artemis programme, which will send astronauts to explore deep space.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple Business Connect Updated to Display Brand Information on Caller ID, Mail and Apple Pay



OxygenOS 15 Global Launch Date Set for October 24, Company Teases AI Features

Related Stories

Continue Reading

Science

Supernova Remnant G278.94+1.35 is Closer to Earth, Claims New Study

Published

on

By

Supernova Remnant G278.94+1.35 is Closer to Earth, Claims New Study

A significant discovery involving a supernova remnant in the Milky Way, identified as G278.94+1.35, has been made by a team of international astronomers. This structure, resulting from a massive stellar explosion, was initially thought to be approximately 8,800 light years away. New findings have revised this distance to about 3,300 light years, making it closer than previously calculated. The remnant’s estimated physical dimensions have also been adjusted to around 189 by 182 light years, contrary to earlier assessments of over 500 light years.

Insights from the Study

According to the study published December 30 on the pre-print server arXiv, highlighted the properties of this remnant. The research team, led by Miroslav D. Filipović, Professor at Western Sydney University, observations were conducted using the Australian Square Kilometer Array Pathfinder (ASKAP) as part of the ASKAP-Evolutionary Map of the Universe project. These observations revealed the nearly circular shape and expansive nature of the remnant, now named “Diprotodon,” in homage to an extinct giant marsupial native to Australia.

The research team attributed the name to raise awareness about the prehistoric megafauna of Australia and ongoing extinction challenges. The findings, as reported by phys.org indicate that the supernova remnant is in a radiative evolutionary phase, suggesting continued expansion.

Characteristics and Significance

Diprotodon’s progenitor star is estimated to have been about 15 times the mass of the Sun. The kinetic energy released during the explosion is approximated at 500 quindecillion ergs. The spectral index of the remnant, measured at around -0.55, aligns with typical shell-type remnants observed in the galaxy. These characteristics place it among the largest supernova remnants known, providing valuable insights into the dynamics of such structures.

The study has offered critical data regarding the formation, expansion, and current state of Diprotodon, contributing to the broader understanding of supernova remnants within the Milky Way.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.


PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds



NISAR Satellite by NASA and ISRO to Monitor Earth Like Never Before

Continue Reading

Science

NISAR: NASA & ISRO’s joint satellite to monitor Earth like never before

Published

on

By

NISAR: NASA & ISRO’s joint satellite to monitor Earth like never before

A collaboration between NASA and the Indian Space Research Organisation (ISRO) has resulted in the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite, which is set to launch in a few months. This mission, designed to track and monitor Earth’s dynamic surface, will use synthetic aperture radar technology to measure changes in land and ice formations. Capable of delivering precise data down to centimetre-level accuracy, NISAR will contribute significantly to understanding natural disasters, ice-sheet movements, and global vegetation shifts.

Unique Dual-Band Technology

According to an official press release by NASA, NISAR is equipped with two radar systems: the L-band with a wavelength of 25 centimetres and the S-band with a 10-centimetre wavelength. This dual-band configuration enables detailed observations of various features, from small surface elements to larger structures. These advanced radars will collect data frequently, covering nearly all land and ice surfaces to provide a comprehensive view of Earth’s transformations.

Technology and Data Applications

As per reports, synthetic aperture radar technology, first utilised by NASA in the 1970s, has been refined for this mission. The data from NISAR will support ecosystem research, cryosphere studies, and disaster response initiatives. Stored and processed in the cloud, the data will be freely accessible to researchers, governments, and disaster management agencies.

Collaboration Between NASA and ISRO

The partnership between NASA and ISRO, formalised in 2014, brought together teams to create this dual-band radar satellite. Hardware was developed across continents, with final assembly in India. ISRO’s Space Applications Centre developed the S-band radar, while NASA’s Jet Propulsion Laboratory provided the L-band radar and other key components. The satellite will launch from ISRO’s Satish Dhawan Space Centre and will be operated by ISRO’s Telemetry Tracking and Command Network.

NISAR’s deployment highlights international collaboration in addressing global challenges, promising transformative insights into Earth’s changing landscapes.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Velvet Ants Venom Affect Mammals and Insects Differently

Published

on

By

Velvet Ants Venom Affect Mammals and Insects Differently

Velvet ants, despite their name, are not ants but parasitic wasps known for their painful stings. These insects, often called “cow killers” due to the intensity of their sting, possess a potent venom capable of acting on different molecular targets depending on the species they encounter. Their defensive mechanisms, which include venom, warning colours, tough exoskeletons, and unique sounds when threatened, have made them nearly invincible to predators. This versatility has intrigued researchers studying their venom’s effects on various creatures.

Study Highlights Dual Mechanisms in Velvet Ant Venom

According to a study published in Current Biology, velvet ant venom operates differently across species. Researchers, including Lydia Borjon, a sensory neurobiologist at Indiana University Bloomington, found that distinct peptides in the venom affect mammals and insects in unique ways. Experiments conducted on the venom of the scarlet velvet ant (Dasymutilla occidentalis) revealed that specific peptides target sensory neurons differently in insects and mammals.

As reported in Science News, in insects, a peptide called Do6a specifically activates neurons sensitive to harmful stimuli. However, in mammals such as mice, pain is triggered by two less abundant peptides, Do10a and Do13a. These peptides activate a broad range of sensory neurons, inducing a generalised pain response. The findings suggest that velvet ants’ venom tailors its effects based on the biology of the recipient, showcasing a rare example of multi-target venom.

Broader Implications of the Research

Joseph Wilson, an evolutionary ecologist at Utah State University, noted to Science News, that velvet ants’ extensive defensive arsenal could be linked to evolutionary pressures from unknown predators, particularly insects. He suggested that while their venom effectively deters a wide range of species, its evolution might have been influenced by specific ecological interactions. Sam Robinson, a toxinologist at the University of Queensland, highlighted that this type of broad-spectrum venom, though rare, may not be unique, as most venoms are tested on limited species.

The study provides new insights into venom evolution and raises questions about the ecological factors driving the development of such complex defensive strategies.

https://www.gadgets360.com/science/news/nasa-delays-artemis-2-and-artemis-3-missions-to-address-key-technical-challenges-7321848

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending