Connect with us

Published

on

Recent research published in Nature by Aman Agrawal from The Conversation, alongside colleagues from the University of Chicago and the University of Houston, sheds light on rainwater’s pivotal role in stabilizing early cells, crucial for the evolution of life.

Understanding Early Cell Stability

Scientists have long pondered how nonliving matter transitioned into living cells capable of replication and metabolism. Chemists like Stanley Miller and Harold Urey demonstrated in 1953 that complex organic compounds could arise from simpler materials under early Earth conditions.

Protocells and Their Composition

Early protocells likely consisted of a matrix material providing structure and genetic material carrying instructions for function. The stability of these protocells was enabled by compartments formed by a matrix and membrane, concentrating reactants and protecting them from the environment.

Models of Protocells

Two models, vesicles and coacervates, are proposed as early protocells. Vesicles, resembling modern cell structures but lacking specialized proteins, limited interaction potential. Coacervates, which lack a membrane, facilitated chemical concentration but struggled with genetic material stability.

Challenges with Coacervates

Coacervates, discovered by Dutch chemists in 1929, lacked membranes, leading to rapid fusion and genetic material mixing. This instability hindered genetic variation crucial for natural selection and evolution.

Rainwater’s Role

Research indicated that rainwater, rich in ion-free water, stabilized coacervates by forming a protective “wall” around them, preventing fusion and genetic material leakage.

Implications and Future Research

This interdisciplinary research not only addresses scientific curiosity about life’s origins but also explores fundamental questions about existence. Understanding early genetic replication mechanisms is crucial in deciphering prebiotic evolution and Earth’s conditions over 3.8 billion years ago.

Conclusion

The study underscores the collaborative efforts across scientific disciplines to unravel the mysteries surrounding life’s inception. By investigating geological, chemical, and environmental conditions of early Earth, researchers aim to uncover the profound origins of life itself.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Former OpenAI CTO Mira Murati Said to Be Raising Capital for New AI Startup



Perseverance Rover Captures Bizarre Mars Rock That Looks Like a Human Head

Continue Reading

Science

Scientists Recreate Cosmic Ray Physics Using Cold Atom in New Laboratory Study

Published

on

By

Scientists Recreate Cosmic Ray Physics Using Cold Atom in New Laboratory Study

For the first time, researchers have managed to simulate a fundamental process of cosmic particle acceleration in a laboratory: the first series of discoveries that will transform our understanding of cosmic rays. Now, scientists from the Universities of Birmingham and Chicago have created a tiny, 100-micrometre Fermi accelerator, in which mobile optical potential barriers collide with trapped atoms, in a partial replica of how cosmic particles pick up energy in space. The technique not only replicates cosmic ray behaviour but also sets a new benchmark in quantum acceleration technology.

Lab-Built Fermi Accelerator Using Cold Atoms Validates Cosmic Ray Theory and Advances Quantum Tech

As per findings published in Physical Review Letters, this fully controllable setup demonstrated particle acceleration through the Fermi mechanism first proposed by physicist Enrico Fermi in 1949. Long theorised to underlie cosmic ray generation, the process had never been reliably replicated in a lab. By combining energy gains with particle losses, researchers created energy spectra similar to those observed in space, offering the first direct validation of Bell’s result, a cornerstone of cosmic ray physics.

In Fermi acceleration, ultracold atoms are accelerated to more than 0.5 metres per second using laser-controlled barriers. Dr Amita Deb, a coauthor and researcher at the University of Birmingham, mentioned, ‘Our chimney is more powerful than conventional quantum nano-measurements, which are the best acceleration tools in the world so far, and while its simplicity and small size can be compelling, its lack of a theoretical speed limit is the most attractive feature.’ The ultracold atomic jets could be readily controlled with high precision in the subsequent experiments.

This progress means that, for the first time, complicated astrophysical events like shocks and turbulence can be studied in a laboratory, lead author Dr Vera Guarrera stated. This opens new avenues for high-energy astrophysics and also for applications in quantum wavepacket control and quantum chemistry.

Researchers plan to find out how different behaviour affects energy cutoffs and acceleration rates. A compact Fermi accelerator of this type could be a cornerstone for studies of fundamental physics and also connect to emerging technologies such as atomtronics.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Amazon Introduces Rewards Gold Cashback Program Ahead of Prime Day 2025 Sale



Elon Musk Says Grok Chatbot Is Coming to Tesla Vehicles by Next Week

Continue Reading

Science

Scientists Say Dark Matter Could Turn Failed Stars Into ‘Dark Dwarfs’

Published

on

By

Scientists Say Dark Matter Could Turn Failed Stars Into ‘Dark Dwarfs’

Astronomers now propose that “failed stars” known as brown dwarfs could be powered by dark matter. Dark matter makes up about 85 percent of the universe’s matter but does not shine; it interacts only via gravity. Brown dwarfs form like stars but lack enough mass to ignite fusion. The theory suggests brown dwarfs in galaxy centers might trap dark matter in their interiors. When that dark matter annihilates, it releases energy that heats the star, turning the dwarf into a brighter “dark dwarf.” If such objects exist, finding them would give scientists a new clue to the nature of dark matter.

Dark Matter in Failed Stars

According to the new model, dense brown dwarfs at the centers of galaxies act like gravity wells that accumulate dark matter. Because dark matter interacts only via gravity, it naturally drifts to galactic cores, where it can be captured by star. As University of Hawai‘i physicist Jeremy Sakstein explains, once inside a star dark matter can annihilate with itself, releasing energy that heats the dwarf. The more dark matter a brown dwarf collects, the more energy it outputs. Crucially, this effect only works if dark matter particles self-annihilate (as with heavy WIMPs); lighter or non-interacting candidates like axions would not create dark dwarfs.

They propose using a chemical signature: a dark dwarf should hold on to lithium-7 that normal brown dwarfs burn away. The researchers say powerful telescopes like NASA’s James Webb Space Telescope might already be sensitive enough to spot cool, dim dark dwarfs near the Milky Way’s center. Detecting even one would strongly suggest that dark matter is made of heavy, self-interacting particles (like WIMPs).

In related work, Colgate astrophysicist Jillian Paulin coauthored studies of ancient “dark stars” fueled by dark matter, while SLAC physicist Rebecca Leane and collaborators have shown that dark matter capture could heat brown dwarfs and exoplanets – a process called “dark kinetic heating”. Together, these ideas highlight how even dim, unusual stars could illuminate the nature of dark matter.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple Takes Fight Against $587 Million EU Antitrust Fine to Court



Apple Loses Top AI Models Executive to Meta’s Hiring Spree

Continue Reading

Science

New Gel-Based Robotic Skin Feels Touch, Heat, and Damage Like Human Flesh

Published

on

By

New Gel-Based Robotic Skin Feels Touch, Heat, and Damage Like Human Flesh

Researchers have created a novel electronic “skin” that could let robots experience a sense of touch. This low-cost, gelatin-based material is highly flexible and durable and can be molded over a robot hand. Equipped with electrodes, the skin detects pressure, temperature changes, and even sharp damage. In tests it responded to pokes, burns and cuts. Unlike conventional designs that use separate sensors for each stimulus, this single “multi-modal” material simplifies the hardware while providing rich tactile data. The findings, published in Science Robotics, suggest it could be used on humanoid robots or prosthetic limbs to give them a more human-like touch.

Multi-Modal Touch and Heat Sensing

According to the paper, unlike typical robotic skins, which require multiple specialized sensors, the new gel acts as a single multi-modal sensor. Its uniform conductive layer responds differently to a light touch, a temperature change or even a scratch by altering tiny electrical pathways. This design makes the skin simpler and more robust: researchers note it’s easier to fabricate and far less costly than conventional multi-sensor skins. In effect, one stretchy sheet of this material can replace many parts, cutting complexity while maintaining rich sensory feedback.

Testing the Skin and Future Applications

The research team tested the skin by casting the gel into a human-hand shape and outfitting it with electrodes. They put it through a gauntlet of trials: blasting it with a heat gun, pressing it with fingers and a robotic arm, and even slicing it open with a scalpel. Those harsh tests generated over 1.7 million data points from 860,000 tiny conductive channels, which fed into a machine-learning model so the skin could learn to distinguish different types of touch.

UCL’s Dr. Thomas George Thuruthel, a co-author of the study, said the robotic skin isn’t yet as sensitive as human skin but “may be better than anything else out there at the moment.” He noted that the material’s flexibility and ease of manufacture as key advantages. Moreover, the team believes this technology could ultimately help make robots and prosthetic devices with a more lifelike sense of touch.

Continue Reading

Trending