Connect with us

Published

on

A team at the Paul Scherrer Institute (PSI) in Switzerland has achieved a breakthrough with a Kagome superconductor (RbV3Sb5) that demonstrates time-reversal symmetry (TRS) breaking at a temperature of 175 Kelvin (-98°C or -144.67 °F). This record temperature suggests promising developments in quantum systems, which typically require ultra-low temperatures to prevent disruptions caused by thermal energy. Researchers believe the high-temperature TRS breaking in RbV3Sb5 can reduce energy needs for quantum technology, potentially accelerating its adoption.

Understanding Time-Reversal Symmetry in Quantum Technology

TRS implies that the fundamental laws remain the same when time flows backward in Physics. However, in materials like RbV3Sb5, TRS is broken, leading to unique quantum states that are challenging yet essential for developing advanced quantum devices. These unusual states result in the material behaving differently depending on the direction of time, an attribute that can be manipulated for enhanced control over quantum systems.

According to the study authors, this Kagome superconductor maintains superconductivity down to approximately two Kelvin but can sustain TRS-breaking quantum states at much higher temperatures, enhancing its suitability for real-world applications. PSI researchers, including Mahir Dzambegovic, highlighted the material’s charge order state, where electrons form an organised pattern, producing a magnetic effect that breaks TRS at -144.67 °F.

Implications for Future Quantum Systems

The discovery of TRS breaking at such temperatures presents significant implications for quantum computing and storage. The ability to maintain these effects at higher temperatures could make quantum technologies more feasible outside of laboratory settings, according to PSI’s team. Notably, the TRS-breaking properties of RbV3Sb5 are tunable, with effects varying based on the material’s depth, from surface to core.

Future studies are expected to further explore the tunability of Kagome superconductors, particularly focusing on the interplay between superconductivity and TRS-breaking effects in RbV3Sb5. The study, published in Nature Communications, marks a step toward achieving practical quantum devices capable of operating in more energy-efficient conditions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Indian Researchers Develop Energy-Efficient Method to Create Glass, Could Improve Efficiency of Data Centres



Realme 14 Pro Lite Said to Be in the Works, Colour Options, RAM and Storage Configurations Tipped

Continue Reading

Science

50,000-year-old baby mammoth remains found nearly intact in Siberia

Published

on

By

50,000-year-old baby mammoth remains found nearly intact in Siberia

The well-preserved remains of a baby mammoth, estimated to be 50,000 years old, were recently revealed by researchers in Russia. Found in the thawing permafrost of the Yakutia region, the specimen has been named “Yana,” referencing the river near which it was uncovered during the summer. According to North-Eastern Federal University, where the remains are displayed, Yana is among the most intact mammoth carcasses ever discovered. Reports confirm that this marks one of only seven complete mammoth remains unearthed globally.

Discovery at Batagaika Crater

Yana’s remains were located in the Batagaika crater, an expansive depression in the Verkhoyansky district that continues to expand due to climate change. The mammoth, weighing over 240 pounds and measuring approximately four feet in length, is believed to have died at around one-year-old. Maxim Cherpasov, Head of the Lazarev Mammoth Museum Laboratory in Yakutsk, stated to Reuters that the survival of the head and trunk in such pristine condition is highly unusual. Typically, these parts are consumed by modern predators or scavengers soon after exposure, but Yana’s head remained largely intact.

A Historic Find in Siberian Permafrost

In recent years, Siberia’s permafrost has yielded numerous prehistoric animal remains due to rising temperatures. The Batagaika research station, near where Yana was found, has also provided remains of a horse, a bison, and a lemming. Anatoly Nikolayev, Rector of North-Eastern Federal University, shared in official reports that the preservation of Yana is extraordinary.

This discovery adds to the growing list of remarkable finds in Yakutia, including the remains of a 32,000-year-old sabre-toothed cat cub and a 44,000-year-old wolf carcass uncovered earlier this year. Researchers are continuing tests to gather more insights into Yana’s life and environment, as per Reuters.

Continue Reading

Science

NASA delays Artemis moon missions; new launch dates set for 2026 and 2027

Published

on

By

NASA delays Artemis moon missions; new launch dates set for 2026 and 2027

NASA has confirmed delays to its Artemis program, postponing the first two crewed lunar missions. Artemis 2, which will send astronauts around the moon, has been rescheduled from September 2025 to April 2026. Artemis 3, aiming to return humans to the lunar surface for the first time in over 50 years, has shifted from late 2026 to mid-2027. The postponements, announced on December 5, are attributed to technical challenges, including issues with the Orion spacecraft’s heat shield.

Heat Shield Complications and Safety Measures

A report from Space.com indicate that the delays stem from findings during the uncrewed Artemis 1 mission in 2022. The Orion spacecraft’s heat shield experienced uneven shedding due to internal pressure caused by trapped gases during a planned skip reentry. NASA Deputy Administrator Pam Melroy, during a press conference, stated that adjustments to the spacecraft’s reentry trajectory would ensure safety.

Impact on Contractors and International Competition

Sources suggest that disruptions to contractor momentum and expertise are potential risks from the schedule changes. Concerns have also been raised regarding NASA’s competitive edge in space exploration. China, which has announced plans to send astronauts to the moon before 2030, could narrow the gap in this symbolic race. Beijing’s advancements, including new rockets and lunar landers, are seen as direct competition.

Potential Shifts in U.S. Space Policy

Uncertainty surrounds the Artemis program’s future under the incoming U.S. administration. Reports speculate that President-elect Donald Trump, who has criticised expensive government projects, may reassess NASA’s reliance on the Space Launch System (SLS). With cost overruns and delays plaguing the SLS, alternatives such as SpaceX’s Starship could gain prominence. Starship, integral to Artemis’ lunar architecture, is considered a more cost-effective and reusable option.

Geopolitical Ramifications and the Road Ahead

Changes to the Artemis program could impact NASA’s partnerships with agencies such as the European Space Agency, as well as its broader moon-to-Mars strategy. Officials have reiterated the importance of Artemis in advancing human exploration, though uncertainty looms over its trajectory.

Continue Reading

Science

Underwater Neutrino Telescopes in the Mediterranean for Cosmic Research

Published

on

By

Underwater Neutrino Telescopes in the Mediterranean for Cosmic Research

Efforts are underway in the Mediterranean Sea to install the underwater neutrino telescope known as KM3NeT, as reported by various sources. The telescopes are designed to detect high-energy neutrinos, subatomic particles emitted from unidentified cosmic sources. Unlike traditional telescopes, these devices rely on capturing light generated when neutrinos collide with seawater. This massive project spans a cubic kilometre of the Mediterranean and involves deploying hundreds of detector strands. The work aims to unveil new insights about the universe.

Unique Design and Deployment Challenges

According to experts, KM3NeT comprises two distinct telescopes featuring glass spheres, each packed with photomultiplier tubes. Simone Biagi, a physicist at Italy’s National Institute for Nuclear Physics, shared with Science News that the telescopes are situated several kilometres below the surface. Deployment involves suspending cables of sensors, resembling strands of pearls, each up to 700 metres in length. These are lowered to the seabed and gradually released to unfurl in the water. A remotely operated submersible is used to make precise connections and inspect the setup.

Scientific Goals of the Project

Sources indicate that one telescope, positioned off Sicily’s coast, is designed to observe high-energy neutrinos originating from space. The second, off the coast of France, is dedicated to studying atmospheric neutrinos and their oscillations. These oscillations provide vital data about how neutrinos shift between different forms, contributing to advancements in particle physics.

Operational Challenges at Sea

Physicists working on this project face significant challenges, including harsh sea conditions and tight schedules. According to reports, deployment campaigns occur annually, each lasting about a month. During this period, researchers work under immense pressure to ensure all equipment functions perfectly. Any errors must be corrected immediately, as adjustments after deployment are impossible.

Experts suggest that the partially completed KM3NeT telescopes are already yielding valuable scientific data, providing insights into quantum gravity effects and neutrino behaviours.

Continue Reading

Trending