Connect with us

Published

on

NASA‘s Curiosity rover has completed its study of the Gediz Vallis channel. In this process it has captured a 360-degree panorama before moving towards a new target called the boxwork. This mysterious region, located on the slopes of Mount Sharp, has been under scrutiny to uncover the role of water in Mars‘ transition from a wetter climate to a dry one. The rover’s findings, which include a unique discovery of sulphur stones, are expected to offer more fresh insights into the planet’s geological history and past habitability.

Rare Sulphur Deposits Found in Gediz Vallis

A major highlight of the mission has been the detection of pure sulphur stones in Gediz Vallis, which had gone unnoticed in previous imaging by the Mars Reconnaissance Orbiter (MRO). Once Curiosity reached the region, these bright white stones revealed yellow crystals when crushed under its wheels. Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory, described the discovery as an intriguing mystery, noting that typical terrestrial sources of sulphur—volcanic activity and hot springs—are absent on Mount Sharp. Researchers are now analysing data to determine how these unusual deposits formed.

Mars’ Geological Story

Observations from Gediz Vallis have painted a complex picture of Martian history. Scientists believe that rivers, wet debris flows, and dry avalanches contributed to the formation of features such as the mound nicknamed “Pinnacle Ridge.” By studying these structures, the mission team is piecing together a timeline of events that shaped the channel during Mars’ climatic transformation.

Boxwork Formation

Curiosity’s next objective is the box work. It is a network of mineral ridges resembling spiderwebs. Kirsten Siebach, a scientist at Rice University, explained that these structures likely formed from minerals crystallising in fractures as water receded. Their vast expanse—spanning up to 20 kilometres—offers a rare opportunity to explore environments where early microbial life could have survived.
The rover, which has travelled over 33 kilometres since its landing in 2012, continues its mission to uncover Mars’ secrets and search for signs of ancient habitability.

Continue Reading

Science

New Analysis of 1977 Wow! Signal Reveals Stronger Cosmic Mystery

Published

on

By

The famous 1977 “Wow!” signal — a mysterious radio burst detected by Ohio’s Big Ear telescope — has been reanalyzed using modern computing techniques. Researchers digitized old telescope records, finding the signal was about four times stronger than first thought, peaking at 250 Janskys. The recalculations also refined its frequency and sky location, ruling …

Continue Reading

Science

Astronomers Capture Sharpest-Ever Solar Flare Images with NSF’s DKIST Telescope

Published

on

By

Astronomers have achieved a major breakthrough by capturing the sharpest images of a solar flare ever recorded, using the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). Observed at the hydrogen-alpha wavelength during the decay of an X1.3-class solar flare, the images unveiled hundreds of ultra-fine coronal loops averaging just 48 kilometers…

Continue Reading

Science

James Webb Detects Carbon Dioxide–Dominated Coma in Interstellar Object 3I/ATLAS

Published

on

By

The James Webb Space Telescope observed 3I/ATLAS, the third interstellar object detected in our solar system. Its coma is unusually rich in carbon dioxide with little water or carbon monoxide, suggesting a CO₂-rich core or an insulating crust. Findings raise new questions about its cosmic origin.

Continue Reading

Trending