Connect with us

Published

on

Last week, three small Australian satellites from Curtin University’s Binar Space Program re-entered Earth’s atmosphere and burned up far earlier than expected, cutting short valuable research opportunities. Launched with an initial lifespan of six months, these CubeSats – named Binar-2, Binar-3, and Binar-4 – only lasted two months in low Earth orbit (LEO), a situation attributed to intensified solar activity that has been challenging satellite operations in recent years.

Solar Activity Surges, Defying Predictions

According to a Live Science report, solar activity has recently surpassed predictions, registering levels one and a half times higher than anticipated for the current solar cycle, known as Solar Cycle 25. This surge, marked by an increase in solar flares, sunspots, and solar wind, is caused by fluctuations in the Sun’s magnetic field, which reverses polarity approximately every 11 years. While solar cycles have been mapped, solar weather forecasting remains in its infancy, making precise predictions challenging.

The space weather effects on Earth have been significant. Intense auroras have been observed closer to the equator, and the heightened solar wind has increased ionising radiation, posing additional hazards for astronauts and high-altitude flights. Satellites in LEO, especially those without thrusters or altitude adjustment systems, such as the Binar CubeSats, face a constant drag that accelerates their orbital decay during periods of heightened solar activity.

The Impact on Satellite Missions

The early demise of the Binar CubeSats highlights the need for improved space weather forecasting to support satellite operations. CubeSats, like those in Curtin’s program, are frequently used for research by universities and often lack the ability to counteract the increased atmospheric drag caused by space weather. Their sudden re-entry illustrates the risks faced by satellites during solar peaks.

Further Binar missions are already in development, with launches planned for late 2026, when solar activity is expected to decline. As solar minimum conditions approach by 2030, the next generation of CubeSats may operate in a more stable space environment, allowing for more prolonged research endeavours.

Continue Reading

Science

New Analysis of 1977 Wow! Signal Reveals Stronger Cosmic Mystery

Published

on

By

The famous 1977 “Wow!” signal — a mysterious radio burst detected by Ohio’s Big Ear telescope — has been reanalyzed using modern computing techniques. Researchers digitized old telescope records, finding the signal was about four times stronger than first thought, peaking at 250 Janskys. The recalculations also refined its frequency and sky location, ruling …

Continue Reading

Science

Astronomers Capture Sharpest-Ever Solar Flare Images with NSF’s DKIST Telescope

Published

on

By

Astronomers have achieved a major breakthrough by capturing the sharpest images of a solar flare ever recorded, using the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). Observed at the hydrogen-alpha wavelength during the decay of an X1.3-class solar flare, the images unveiled hundreds of ultra-fine coronal loops averaging just 48 kilometers…

Continue Reading

Science

James Webb Detects Carbon Dioxide–Dominated Coma in Interstellar Object 3I/ATLAS

Published

on

By

The James Webb Space Telescope observed 3I/ATLAS, the third interstellar object detected in our solar system. Its coma is unusually rich in carbon dioxide with little water or carbon monoxide, suggesting a CO₂-rich core or an insulating crust. Findings raise new questions about its cosmic origin.

Continue Reading

Trending