Connect with us

Published

on

Magnetic vortices descending from Jupiter’s ionosphere into its deep atmosphere are believed to trigger the formation of ultraviolet-absorbing anticyclonic storms, according to a study published on November 26 in Nature Astronomy. These storms, appearing as dark ovals, span the size of Earth and have been observed primarily in Jupiter’s polar regions. The phenomenon was first detected in ultraviolet (UV) light by the Hubble Space Telescope in the 1990s and later confirmed by NASA’s Cassini spacecraft in 2000.

Research Unveils Tornado Dynamics

The study, published in the Nature journal, was led by Troy Tsubota, an undergraduate researcher at the University of California, Berkeley, in collaboration with Michael Wong from UC Berkeley, Amy Simon of NASA’s Goddard Space Flight Center, and others.

The findings suggest these dark ovals are formed by swirling magnetic tornadoes generated due to friction between Jupiter’s immense magnetic field lines and those in its ionosphere. These tornadoes are thought to stir aerosols, creating dense patches of UV-absorbing haze in the stratosphere.

The Role of the Io Plasma Torus

The study highlights that Jupiter’s magnetic field, among the strongest in the solar system, interacts with the Io Plasma Torus — a ring of charged particles released by volcanic activity on Jupiter’s moon Io. This interaction generates friction, potentially initiating magnetic vortices that descend into the planet’s atmosphere.

The exact mechanism remains unclear, with researchers debating whether these tornadoes dredge up material from deeper atmospheric layers or create the hazes independently.

Regular Observations Confirm Patterns

The Outer Planet Atmospheres Legacy (OPAL) project, which captures annual images of Jupiter using the Hubble Space Telescope, played a pivotal role in the discovery. Between 2015 and 2022, dark ovals were observed at the south pole in 75% of images but were significantly rarer at the north pole. These formations typically appear over a month and dissipate within two weeks, resembling a magnetic “tornado alley.”

Continue Reading

Science

Scientists Unveil Screen That Produces Touchable 3D Images Using Light-Activated Pixels

Published

on

By

Engineers at UC Santa Barbara have developed a revolutionary display that allows users to physically feel digital images in real time. The system uses optotactile pixels that expand when struck by light, forming raised bumps that match visual content. This wire-free design relies on heat-activated air pockets, opening new possibilities for interactive screens in smart…

Continue Reading

Science

SpaceX Expands Starlink Network With 29-Satellite Falcon 9 Launch

Published

on

By

SpaceX has launched 29 Starlink satellites into low Earth orbit from California, expanding its broadband constellation to more than 9,100 active spacecraft. The reusable Falcon 9 booster completed its 12th mission with a successful ocean landing, highlighting SpaceX’s push toward rapid, low-cost, global internet coverage.

Continue Reading

Science

Nancy Grace Roman Space Telescope Fully Assembled, Launch Planned for 2026–2027

Published

on

By

NASA has successfully completed the full assembly of the Nancy Grace Roman Space Telescope, marking a major milestone for the next-generation infrared observatory. With its powerful wide-field camera and advanced coronagraph, Roman is expected to transform our understanding of dark energy, galaxy formation, and exoplanets once it launches later this decade.

Continue Reading

Trending