GE Hitachi Nuclear Energy’s BWRX-300 small modular reactor incorporates proven components.
Courtesy: GE Verona
GE Vernova is aiming to deploy small nuclear reactors across the developed world over the next decade, staking out a leadership position in a budding technology that could play a central role in meeting surging electricity demand and reducing carbon dioxide emissions.
The company’s small modular reactor, or SMR, is designed to reduce the cost of building new nuclear plants, said Nicole Holmes, chief commercial officer at GE Vernova’s nuclear unit GE Hitachi.
GE Vernova is the spinoff of General Electric’s former energy business. The company’s stock has more than doubled since listing on the New York Stock Exchange last April, with investors seeing the Cambridge, Mass.-based company playing a key role in the future of the power industry through a portfolio of divisions that span nuclear, natural gas, wind and carbon capture.
The U.S. government wants to triple nuclear power by 2050 to shore up an electric grid that is under growing pressure from surging power demand. But large nuclear projects, in the U.S. at least, are notoriously plagued by multi-billion dollar budgets, cost overruns, delayed construction timelines and, sometimes, cancellations.
“Affordability has been the real challenge for nuclear through the many years,” Holmes told CNBC. “We’re beginning to crack that at this point.”
Simpler design
GE Vernova’s SMR, the BWRX-300, has a simpler design with fewer components and less concrete and steel compared to a larger nuclear plant, Holmes said. The reactor might cost somewhere in the range of $2 billion to $4 billion to build compared to $10 billion to $15 billion for a large nuclear plant, Holmes said.
The plant generates 300 megawatts of electricity, enough to power more than 200,000 U.S. households. The average reactor in the U.S. fleet has about 1,000 megawatts of power, enough for more than 700,000 homes. The smaller size offers more flexibility in terms of location, she said.
“You could put four of these on a site and get the same output as you would from a single large reactor,” the executive said. “You can have one started, deploying energy, making money while you build out others. It gives you a lot of optionality,” she said.
GE Vernova is targeting more than $2 billion in annual revenue from its small reactor business by the mid-2030s. That compares with total company revenue of $33.2 billion last year. GE Vernova sees demand for as many as 57 small reactors in total across its target markets in the U.S., Canada, the United Kingdom and Europe by 2035.
To hit that revenue target, GE Vernova would need to ship between three to four reactors per year, according to an October research note from Bank of America. The company could capture a 33% market share in its target markets, according to the bank.
“We’re underway building a strong order book in those target markets,” Holmes said. “A lot of the buyers in these early stages will be utilities.”
GE Vernova is also talking to major tech companies, which Holmes declined to name, that are showing a growing interest in nuclear power to meet electricity demand from their artificial intelligence data centers.
“We are in conversations with a lot of the big tech companies,” Holmes said. “I see a ton of interest from them in in new nuclear, and what it could do to meet some of their energy demands.”
North America deployments
GE Vernova signed a collaboration agreement in March 2023 with Ontario Power Generation, Tennessee Valley Authority and Synthos Green Energy in Poland to invest $500 million to kick start the BWRX-300 and launch the reactor at a commercial scale.
The goal is to create a standardized reactor design that can be deployed across GE Vernova’s target markets rather than building different nuclear plants at each site, Holmes said.
“We’re working on a plant that can be deployed in many, many places across many, many regulatory regimes and still be the same fundamental plant,” Holmes said. “They’re helping us with those requirements to make it the same,” she said of the collaboration partners.
GE Vernova is also seeing growing interest in expanding capacity at existing nuclear plants by adding small modular reactors, said Chief Financial Officer Kenneth Parks on the company’s Oct. 23 earnings call.
GE Vernova won the first commercial contract in North America to deploy a small modular reactor for Ontario Power in January 2023. Holmes described the project as the first commercial deployment of an SMR not only in North America, but also in the developed world.
The reactor is scheduled to come online in 2029 in Darlington on Lake Ontario about 60 miles east of Toronto. Ontario Power eventually plans to deploy three more BWRX-300 reactors at Darlington.
In the U.S., the Tennessee Valley Authority (TVA) is considering building a BWRX-300 at its Clinch River site a few miles from Oak Ridge National Laboratory.
TVA received the first early site permit in the nation from the Nuclear Regulatory Commission in 2019 for a small modular reactor at Clinch River. The power company has approved $350 million for the project so far, though its board has not made a final decision yet on whether to build a reactor.
TVA is pursuing small reactors because there is less financial risk tied to them compared to large 1,000 megawatt, or 1 gigawatt, size reactors, said Scott Hunnewell, vice president of TVA’s new nuclear program.
“If you have a gigawatt scale plant where your construction timeline starts at eight years and then gets longer, your interest expenses really start to accrue and really drive your cost up,” Hunnewell told CNBC. “The SMR just overall, it’s a smaller bite at the apple, a lot less risk associated with it.”
And TVA is already familiar with the boiling water technology of the BWRX-300, Hunnewell said. The power company operates three large GE boiling water reactors at its Browns Ferry site that use the same fuel that would power the BWRX-300.
“GE Hitachi is a known quantity,” Hunnewell said.
GE Vernova, Ontario Power, TVA and Synthos Green Energy will share lessons learned as they deploy reactors to further streamline the construction process, Holmes said.
The collaboration will also potentially benefit companies that are not part of the team. TVA plans to share information with any utility that is interested in learning from the power company’s experience as it seeks to deploy small reactors, Hunnewell said.
Tech sector interest
While the primary customers for the BWRX-300 are utilities, the tech sector is playing an increasingly influential role in reviving nuclear power after a long period of reactor shutdowns in the U.S. due to poor economics in the face of cheap and plentiful natural gas.
Holmes doesn’t see the tech companies actually building and operating their own nuclear plants, but instead supporting the deployment of new reactors by purchasing dedicated power from utilities.
“As utilities think about deploying additional capacity, these large tech companies could be an off taker and agree to power purchase prices that support deployment of these early units and early technologies,” Holmes said.
The growing power needs of tech companies’ artificial intelligence data centers will be a “tremendous demand driver” for small nuclear reactors, the executive added.
The electric restomod experts at Lunaz have turned their talents towards the classic Rolls-Royce Phantom V limousine – and the result is exactly the kind of smooth, quiet, and luxurious ride RR’s founders would have built.
Rolls-Royce’ founders dedicated their engineering talents to developing cars that were smooth, quiet, and adequately powerful – and they spared no expense. The company Charles Rolls and Henry Royce founded would eventually go on to develop some of the most powerful and celebrated combustion engines of the twentieth century … but the car they wanted to build? It was electric.
“The electric car is perfectly noiseless and clean,” Charles Rolls told The Motor-Car Journal, all the way back in April of 1900. (!) “There is no smell or vibration, and they should become very useful when fixed charging stations can be arranged. But for now, I do not anticipate that they will be very serviceable – at least for many years to come.”
Well, 125 years seems like “many” to – and the talented craftspeople and engineers at Lunaz seem to agree. Meet the Lunaz Rolls-Royce Phantom V limousine.
Advertisement – scroll for more content
It’s glorious
Rolls-Royce Phantom V; via Lunaz.
Lunaz says it’s true to Rolls’ vision “down to the smallest, most indulgent detail.” To that end, the company re-trims the modern heated and ventilated seats in fine leathers, hand-cut and stitched to the buyers’ specifications. In the rear, the center console can be ordered with a built-in cigar humidor, a cocktail bar, or some other custom-spec, lockable storage lined in suede and polished walnut (translation: guns and drugs, probably).
When reimagining the Rolls-Royce Phantom V, (we) started by understanding the essence of its original design. Every component and dynamic was scrutinized to identify where thoughtful innovation could truly elevate the experience. The result is a harmonious blend of modern advancements and original mastery, unlocking new levels of performance, reliability and refinement while honoring Rolls-Royce’ classic soul.
Like the classic Bentley S2 Continental the company revealed in 2023, the big electric Roller is equipped with an 80 kWh battery pack sending electrons to a proprietary Lunaz drivetrain featuring 400 hp worth of electric motors delivering a silky-smooth 530 lb-ft of torque, good for a 0-100 km/h (62 mph) swoosh in about seven seconds. Of course, why you’d ever ask your driver to perform such plebian stunts is simply beyond me.
The transformation and restoration took more than 5,500 man-hours to complete, and involve more than 11,000 new or reconditioned components at a cost of more than £1 million (about $1.35 million US). If you place your order today, you should get yours in 18-24 months.
Your personalized home solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. The best part? You won’t get a single phone call until after you’ve elected to move forward.Get started, hassle-free, by clicking here.
FTC: We use income earning auto affiliate links.More.
Fortescue has taken the wraps off a prototype of its proposed “Infinity Train” electric locomotive, making the 1,100 km (about 685 miles) trip from Perth to the Pilbara and marking a major milestone in the decarbonization of the company’s heavy haul operations.
Co-developed with the locomotive experts at Downer Group, Fortescue revealed its concept for a battery electric “Infinity Train” back in March of 2022. At the time, the company promised a “world’s first” iron ore train capable of fully charging its batteries through regenerative braking. The two companies claimed the clever technology would create a self-sustaining, zero-emission rail system powered entirely by the force of gravity during the train’s loaded downhill travels.
This week, the concept went from the drawing board to the real world, completing an 1,100 km trip across Australia and proving itself to be up to the task of handling the grueling demands of Fortescue’s massive mining operations.
“We’re thrilled to see our battery electric locomotive prototype arrive in the Pilbara,” said Ellie Coates, CEO of Fortescue Zero. She added that the achievement, using zero fossil fuels, “represent(s) a major step in Fortescue’s journey to Real Zero.”
Advertisement – scroll for more content
The Fortescue Infinity Train uses the energy produced by slowing the loaded train on downhill sections of the company’s 385 mile private, heavy-haul rail network to recharge its battery systems. That energy is enough to bring the unloaded train back to the mine, eliminating the need for external charging infrastructure or additional renewable energy sources, making the train almost entirely self-sufficient.
Fortescue says the deployment of the Infinity Train concept at its mines will eliminate more than 82 million liters of diesel fuel consumption (about 21 million gallons, which ChatGPT tells me amounts to about 235,200 tons of CO₂ emissions).
Your personalized home solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. The best part? You won’t get a single phone call until after you’ve elected to move forward.Get started, hassle-free, by clicking here.
FTC: We use income earning auto affiliate links.More.
A new study by the Pembina Institute shows that a third of the commercial trucks and vans on Toronto’s roads are ready to electrify today – while nearly half could be electrified by 2030.
A new analysis by the Pembina Institute titled Electrifying Fleet Trucks: A case study estimating potential in the GTHA finds that as many as a third of trucks in the Greater Toronto and Hamilton Area (GTHA) could go electric today, rising to more than half by early 2030s — insulating businesses from rising fuel costs and reducing harmful air pollution that drives up health care costs. What’s more, the report found that battery range and charging access are less of a barrier than expected.
“Real-world travel data from Canadian trucks, collected over summer and winter months, shows that electrification is possible today,” says Chandan Bhardwaj, Senior Analyst at the Pembina Institute. “In fact, with a staggered approach, the GTHA — home to over half the province’s vehicle stock — could reach 50% sales for lighter trucks by 2030, helping offset lower adoption rates for heavier trucks.”
So, what’s holding back electric vehicle adoption? According to the study’s authors, it’s a matter of public policy. But without the right policies in place, the study argues, businesses face unnecessary hurdles in making the switch.
Advertisement – scroll for more content
“Our analysis shows that Ontario has a clear path to accelerating the transition to zero-emission trucks — unlocking economic opportunities, improving public health and positioning itself as a leader in clean transportation,” says Adam Thorn, Transportation Director at the Pembina Institute. “With the right policies in place, businesses can reap the benefits of lower costs while the province strengthens its manufacturing sector and energy security.”
We already knew this
Schneider electric semis charging in El Monte, CA; via NACFE.
CARB staff believe that several heavy-duty ZE vocational trucks are ready to be electrified because of their low daily mileage demands (<100 mi). Long-haul Class 8 trucks continue to be a challenge to fully electrify because of the long operation range (300+ mi) and on-demand charging need.
In fact, the California study came to almost the exact conclusion that the Toronto study did when examining the heavy-duty Class 7 and 8 EV market. Which is to say: it’s not a question of capability, but a question of availability.
“The availability of on-road heavy-duty ZE trucks has increased in recent years,” reads the report. “But their numbers remain significantly lower than their diesel and natural gas counterparts. As of 2022, an estimated 2,300 on-road ZE medium- and heavy-duty vehicles are operating in California, with the vast majority located in South Coast Air Bassin (Figure 1). On-road heavy-duty ZE transit buses account for the majority of all on-road heavy-duty ZEVs in California, but, as of 2023, sales of ZE heavy-duty trucks and medium-duty step vans have outpaced other vocations, indicating that these vehicles will be more prevalent in fleets in the near future.”
Businesses can save up to 40% of fuel and maintenance costs by switching to electric trucks.
Electric trucks eliminate tailpipe emissions, cutting harmful air pollution and improve public health.
Traffic related air pollution in the Greater Toronto and Hamilton Area leads to 700 premature deaths and 2,800 hospitalizations every year, costing health care system $4.6 billion annually.
Ontario’s Driving Prosperity plan highlights the need for increased electrification, while the City of Toronto is targeting 30% of all registered vehicles to be electric by 2030.
Governments worldwide are embracing electrification, setting ambitious sales targets for zero-emission vans and trucks.
By 2030, jurisdictions like Europe, China, California, British Columbia and Quebec aim for about 35% of new truck sales to be zero-emission, ramping up to nearly 100% by 2040.
Your personalized home solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. The best part? You won’t get a single phone call until after you’ve elected to move forward.Get started, hassle-free, by clicking here.
FTC: We use income earning auto affiliate links.More.