Connect with us

Published

on

A recent study published in The Astronomical Journal has revealed the discovery of a fourth planet in the Kepler-51 system, an already remarkable planetary system known for hosting three ultra-low-density “super-puff” planets. This discovery was made by a research team led by Dr Jessica Libby-Roberts, a postdoctoral fellow at Penn State’s Centre for Exoplanets and Habitable Worlds, and Dr Kento Masuda, Associate Professor of Earth and Space Science at Osaka University. The finding suggests that the gravitational influence of the newly identified planet, named Kepler-51e, explains unexpected variations in the transit timings of the system’s known planets.

Unexpected Findings During Observations

As per a report by Phys.org, the researchers initially aimed to study Kepler-51d using NASA’s James Webb Space Telescope (JWST) but observed its transit occurring two hours earlier than predicted. This significant deviation prompted further analysis of data from NASA’s Kepler and TESS telescopes, Hubble Space Telescope and ground-based observatories such as the Apache Point Observatory (APO) and Palomar Observatory, as per reports. According to the team, only a four-planet model could account for the observed transit timing variations.

Insights Into the Kepler-51 System

Kepler-51e is believed to have a mass comparable to the existing planets in the system, following a relatively circular orbit of approximately 264 days. However, its classification as a “super-puff” remains uncertain due to the lack of transit data needed to calculate its radius and density. The inner three planets, known for their extremely low densities, continue to intrigue scientists. The team noted that accounting for the fourth planet alters previously estimated masses of the inner planets, slightly increasing their values while maintaining their status as super-puffs.

Future Implications of the Study

Dr Libby-Roberts, in a statement, indicated the potential for further exploration, stating that Kepler-51e’s orbit, located just inside the system’s habitable zone, suggests the possibility of additional planets or complex gravitational interactions. Continued observations may uncover planets farther from the star, contributing to the search for potentially habitable worlds. Researchers are also analysing data from JWST to study the atmospheric composition of Kepler-51d, which may shed light on the formation mechanisms of such unusual planets.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Gold and Silver Jewellery Found in 1,600-Year-Old Aristocratic Burials in Crimea



NASA Develops Robotic Technologies for Autonomous Exploration of Ocean Worlds

Continue Reading

Science

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

Published

on

By

NASA Satellite Detects Tree Leaf Changes as Early Volcano Eruption Warning Signal

NASA scientists might soon be able to forecast volcanic eruptions by monitoring how trees respond from space. Now, in a new collaboration with the Smithsonian Institution, they have discovered that tree leaves grow lusher and greener when previously dormant volcanic carbon dioxide seeps up from the ground — an early warning that a cone of magma is pushing upwards. Now, using satellites such as Landsat 8 and data from the recent AVUELO mission, scientists think this biological response could be visible remotely, serving as an added layer of early warning for eruptions in high-risk areas that currently menace millions worldwide.

NASA Uses Tree Greening as Satellite Clue for Early Volcano Eruption Warnings in Remote Regions

As per the research by NASA’s Earth Science Division at Ames Research Centre, greening occurs when trees absorb volcanic carbon dioxide released as magma rises. These emissions precede sulfur dioxide and are harder to detect directly from orbit.

While carbon dioxide does not always appear obvious in satellite images, its downstream effects — enhanced vegetation, for example — can help reinforce existing volcanic early warning systems, notes volcanologist Florian Schwandner. It could be important because, as the U.S. Geological Survey says, the country is still one of the most volcanically active.

Globally, about 1,350 potentially active volcanoes exist, many in remote or hazardous locations. On-site gas measurement is costly and dangerous, prompting volcanologists like Robert Bogue and Nicole Guinn to explore tree-based proxies.

Guinn’s study of tree leaves around Sicily’s Mount Etna found a strong correlation between leaf colour and underground volcanic activity. Satellites such as Sentinel-2 and Terra have proven capable of capturing these subtle vegetative changes, particularly in forested volcanic areas.

To confirm this method, climate scientist Josh Fisher led NASA-Smithsonian teams in March 2025 to Panama and Costa Rica, collecting tree samples and measuring gas levels near active volcanoes. Fisher sees this interdisciplinary research as key to both volcano forecasting and understanding long-term tree response to atmospheric carbon dioxide, which will reveal future climate conditions.

The benefits of early carbon dioxide detection have been demonstrated in the 2017 eruption of Mayon volcano in the Philippines, where it allowed mass evacuations and saved more than 56,000 lives. It has its limitations, like bad terrain or too much environmental noise, but it could be a game-changer.

Continue Reading

Science

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

Published

on

By

Russian Researchers Discover 11 New AGNs in All-Sky X-ray Survey

11 new active galactic nuclei were detected in an all-sky X-ray source survey conducted by researchers from the Russian Academy of Sciences. A team led by Grigory Uskov has been on an inspection of the X-ray sources found in the ART-XC telescope of the Spektr-RG (SRG) space observatory. So far, their studies have resulted in the identification of more than 50 AGNs and several cataclysmic variables. A deeper dive into the physical properties and radiation nature of those galaxies will be crucial for a wide range of studies such as statistical insights, refining and testing cosmological models, classification studies etc.

Classification of newly found AGN

According to the recent study published in Astronomy letters, the newly discovered active galactic nuclei from the ARTSS1-5 catalog are categorised as the Seyfert galaxies, seven type 1 (Sy 1), three type 1.9 (Sy 1.9) and one type 2 (Sy 2).

AGN or active galactic nuclei are considered as the most luminous persistent sources of electromagnetic radiation in the universe. These compact regions at the centre of a galaxy are extremely energetic due to accretion onto a supermassive black hole or star formation activity at the galaxy’s center.

Based on their luminosity, AGNs are categorised as Seyfert Galaxies and Quasars. Seyfert galaxies are lower-luminosity AGNs where the host galaxy is clearly visible and emit a lot of infrared radiation, and have broad optical emission lines.

Research findings

The published paper states the 11 newly found galaxies are located relatively nearby, at redshifts of 0.028-0.258. The X-ray luminosities of these sources are within the range of 2 to 300 tredecillion erg/s, therefore typical for AGNs at the present epoch.

The spectrum of one of the new AGNs, designated SRGA J000132.9+240237, is described by a power law with a slope smaller than 0.5, which suggests a strong absorption and a significant contribution of the radiation reflected from the galaxy’s dusty torus. The authors of the paper noted that longer X-ray observations are required to determine the physical properties of this AGN.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Itel A90 With Unisoc T7100 Chipset, 13-Megapixel Main Camera Launched in India



Realme Neo 7 Turbo Confirmed to Launch This Month, Pre-Reservations Begin

Related Stories

Continue Reading

Science

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Published

on

By

New Study Reveals Recent Ice Gains in Antarctica, But Long-Term Melting Continues

Global warming and climate change have been subjects of major concern for a long time. One of the key indicators of this phenomenon is the melting of ice in the polar regions. Researchers from Tongji University in Shanghai have been using NASA satellite data to track changes in Antarctica’s ice sheet over more than two decades. Their newest study states that despite the increase in global temperature, Antarctica has gained ice in recent years. However, it cannot be considered as a miraculous reversal in global warming because over these two decades, the overall trend is substantial ice loss. Most of the gains have been caused by unusual increased precipitation over Antarctica.

About the New study

According to the new study , NASA’s Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-On satellites have been monitoring this ice sheet since 2002. The ice sheet covering Antarctica is the largest mass of ice on Earth

The satellite data revealed that the sheet experienced a sustained period of ice loss between 2002 and 2020. The ice loss accelerated in the latter half of that period, increasing from an average loss of about 81 billion tons (74 billion metric tons) per year between 2002 and 2010, to a loss of about 157 billion tons (142 billion metric tons) between 2011 and 2020, according to the study. However, the trend then shifted.

The ice sheet gained mass from 2021 to 2023 at an average rate of about 119 billion tons (108 metric tons) per year. Four glaciers in eastern Antarctica also flipped from accelerated ice loss to significant mass gain.

General Trend in global warming

Climate change doesn’t mean that everywhere on Earth will get hotter at the same rate, so a single region will never tell the whole story of our warming world.

Historically, temperatures over much of Antarctica have remained relatively stable, particularly compared to the Arctic. Antarctica’s sea ice has also been much more stable relative to the Arctic, but that’s been changing in recent years.

Continue Reading

Trending