Connect with us

Published

on

By Dr. Priyom Bose, Ph.D. Reviewed by Danielle Ellis, B.Sc.

What happens after HIV infection?
Evolution of HIV diagnostic assays
Conclusions
References
Further reading

Acquired immunodeficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV) that attacks the body’s immune system, making it vulnerable to all infections. One of the major concerns of the early AIDS epidemic that began in 1981 was the lack of proper diagnostic measures to identify infected individuals.1 Since the development of the first HIV diagnostic assay in 1985, scientists have continued to improve diagnostic accuracy, detection speed, and cost.

Image Credit: Hanna Karpiak/Shutterstock.com What happens after HIV infection?

The immune system produces antibodies after encountering harmful foreign substances or antigens. HIV infects the vital cells associated with immunity, such as macrophages, helper T cells, and dendritic cells, and disrupts their function. The three important HIV antigens are p24, gp 41, and gp 120.2

HIV is a slow-replicating retrovirus that is transmitted through sexual intercourse, sharing an infected needle, or by blood transfer.3 After HIV infection, the viral load cannot be measured immediately due to low plasma load. Typically, the viral RNA can be measured within 10 to 12 days after infection.4

Antibodies to p24 and gp 41 are the first serological markers used to detect HIV infection. IgG antibodies appear approximately three weeks after infection. In the majority of HIV-infected individuals, HIV antibodies appear to circulate within 1 to 2 months of the infection. However, in a few cases, it may take up to six months to appear at a detectable level.5 Evolution of HIV diagnostic assays

Over the years, scientists have developed many immunoassays and nucleic acid amplification tests (NAATs) to accurately and high-throughput HIV diagnosis. These tests are broadly divided into two categories, namely, screening and confirmatory tests. Typically, HIV tests are performed on blood, oral fluids, or urine samples.6

HIV screening is performed by various immunoassays that focus on detecting IgG antibodies against HIV-1 antigens in the serum. Techniques such as Western blot, line immunoassay (LIA), and recombinant immunoblot are used as confirmatory tests.7 Some of the important HIV diagnostic assays are discussed below: Serological testing for HIV

In the mid-1980s, simple serological tests for HIV antibodies were developed based on culture-derived viral antigen preparation.7 These tests enabled HIV diagnosis and assessed blood and blood product supplies. Since the early assays, various serological assays have been developed that aided simple/rapid testing, high-throughput screening, confirmatory tests, incidence determination, and epidemiological surveillance. Since its first development, five generations of enzyme immunoassays (EIAs) have emerged based on varied antigen preparations and detection chemistries.8

First-generation assays: The first-generation EIAs detect IgG antibodies from antigens derived from whole viral lysates of HIV-positive cultures. Since crude antigen lysate contains impurities, this method exhibited reduced specificity and high false positivity. In contrast, immunofluorescence assays or Western blotting (WB) have shown higher specificity and lower false positivity.

Second-generation assays: Second-generation assays involve the use of recombinant proteins or synthetic peptides derived from the immunodominant regions (IDR) of HIV-1 proteins and gp36 of HIV-2, which increases sensitivity and decreases false positivity.

Third-generation assays: Third-generation assays, including the Genetic Systems HIV-1/HIV-2 Plus O EIA, use a variety of antigens to detect HIV-1 and -2 antibodies in the serum. A major advantage of third-generation sandwich format assays is their ability to detect HIV-1 IgM antibodies early, enabling quicker HIV diagnosis.

Fourth-generation assays: The fourth-generation EIAs, including the Abbott Architect HIV Ag/Ab Combo assay, utilize fully automated chemiluminescent microparticle technology that can instantaneously identify antibodies to HIV-1 and HIV-2 and HIV-1 p24 antigen. This technique has further allowed early HIV diagnosis. Other advantages of fourth-generation high-throughput assays are their capacity to perform more than 150 tests per hour and their ability to test specimens immediately upon arrival and generate results within 30 minutes.  These assays are suitable for facilities, such as blood banks, that handle high volumes of blood samples.

Fifth-generation assays: Fifth-generation assays, such as the Bio-Rad BioPlex 2200 HIV Ag-Ab assay, use magnetic beads coated with p24 monoclonal antibodies and epitopes specific for HIV-1 and HIV-2. This type of assay has a major advantage in  that it can confirm HIV infection in a single test. Interested in Assay Kits? Explore Equipment Here

Despite the advancements in EIA assays, the challenges associated with the generation of false positive results persist. Therefore, EIA-reactive specimen is typically retested with supplemental tests, such as Western Blot. Rapid diagnostic tests Related StoriesSweden exceeds UNAIDS HIV goals but faces new challengesNutrition's pivotal role in combating tuberculosis: addressing N-AIDS for better outcomes

The first HIV rapid test was available in the early 1990s. It determined an individual's serostatus before surgery, maternal labor/delivery, and organ transplant. Rapid diagnostics is based on immunochromatographic technology that uses blood from finger pricks to assess HIV status. 9 This test can provide results in less than 30 minutes and can be used in point-of-care (POC) settings. Since this test presents both false positive and negative results, it is essential to confirm the findings with laboratory-based HIV assays.

The main advantage of this technique is that any non-laboratory staff can perform it in a primary health care center. Even though decentralization of HIV diagnostic services has increased HIV test service in remote areas, it has been challenged by the lack of national guidelines, waste disposal, inventory management, and quality assurance (QA) monitoring.10

HIV self-testing, based on rapid testing methods, has allowed individuals who would otherwise refrain from testing in fear of discrimination to perform the test privately and start proper intervention. The World Health Organization (WHO) has prequalified several HIV rapid tests for HIV self-testing, including the Insti HIV-1/HIV-2 antibody tests and the Oraquick rapid HIV-1/2 antibody test.10 Nucleic acid test (NAT)

The NAT identifies HIV nucleic acid, i.e., either RNA or proviral DNA, in the blood sample. This test is based on the principles of polymerase chain reaction (PCR), nucleic acid sequence-based amplification, or ligase chain reaction.11 This test has proved to be vital in situations when an antibody against HIV is absent in serum. NAT is also performed in newborns of HIV-infected mothers. Unlike other assays, this test can detect HIV even after recent or possible exposure to the virus. Furthermore, NAT can quantify viral load.

Revolutions in Infectious Disease Testing Conclusions

The advancements in HIV diagnostic assays have played a vital role in identifying, staging, and monitoring infected individuals, even when they are under antiretroviral therapy. These assays have played an important role in surveillance and identification of transmission hot spots. Extraordinary progress in HIV testing methodologies has not only reduced false positives but decreased assessment time as well. References Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841. doi: 10.1101/cshperspect.a006841. Foster JE., et al. Viruses as Pathogens: Animal Viruses, With Emphasis on Human Viruses. Viruses. 2018; 157-187. doi.org/10.1016/B978-0-12-811257-1.00007-3 Dasgupta A, Wahed. Human immunodeficiency virus (HIV) and hepatitis testing. Clinical Chemistry, Immunology and Laboratory Quality Control (Second Edition). 2021; 513-533. doi.org/10.1016/B978-0-12-815960-6.00015-7 Konrad BP, et al. On the duration of the period between exposure to HIV and detectable infection. Epidemics. 2017; 20, 73-83. doi.org/10.1016/j.epidem.2017.03.002 Davis LE. Acute viral meningitis and encephalitis. Infections of the Nervous System, 1987; 156-176. doi.org/10.1016/B978-0-407-02293-5.50014-3 Pant PN. Oral fluid-based rapid HIV testing: issues, challenges and research directions. Expert Review of Molecular Diagnostics. 2007; 7 (4), 325-328, DOI: 10.1586/14737159.7.4.325 Abdullah DM, et al. The contemporary immunoassays for HIV diagnosis: a concise overview. Asian Biomed (Res Rev News). 2023;17(1):3-12. doi: 10.2478/abm-2023-0038. Alexander TS. Human Immunodeficiency Virus Diagnostic Testing: 30 Years of Evolution. Clin Vaccine Immunol. 2016;23(4):249-53. doi: 10.1128/CVI.00053-16. Aidoo S, et al. Suitability of a rapid immunochromatographic test for detection of antibodies to human immunodeficiency virus in Ghana, West Africa. J Clin Microbiol. 2001;39(7):2572-5. doi: 10.1128/JCM.39.7.2572-2575.2001. Parekh BS, et al. Diagnosis of Human Immunodeficiency Virus Infection. Clin Microbiol Rev. 2018;32(1):e00064-18. doi: 10.1128/CMR.00064-18. Garrett, P. E. Quality control for nucleic acid tests: Common ground and special issues. Journal of Clinical Virology. 2001; 20(1-2), 15-21. doi.org/10.1016/S1386-6532(00)00150-5

Further ReadingAll HIV ContentThe Economic Impacts of AIDSRecent Advancements in Treating HIV

Last Updated: Nov 29, 2024

Continue Reading

Science

NASA and ISRO Confirm Japan’s Moon Lander Resilience Crashed at Mare Frigoris

Published

on

By

NASA and ISRO Confirm Japan’s Moon Lander Resilience Crashed at Mare Frigoris

NASA’s Lunar Reconnaissance Orbiter (LRO) and India’s Chandrayaan-2 orbiter have captured images of Japan’s Resilience lunar lander after it suffered a catastrophic crash on the Moon. Resilience, developed by private firm ispace, had been attempting to touch down in the Mare Frigoris region on June 5. The lander was carrying scientific experiments and a small European lunar rover, Tenacious, slated to deploy an art model on the surface. Contact was lost about 100 seconds before the planned touchdown, and the new images show debris scattered around the impact site. These images provide the first confirmation of Resilience’s fate.

Crash site images reveal debris field

According to the captured crash site image by NASA’s Lunar Reconnaissance Orbiter on June 11, 2025, there is a dark smudge of disturbed regolith where Resilience hit the surface. India’s Chandrayaan-2 orbiter captured follow-up images on June 16 showing the debris field in greater detail. Astronomy experts identified at least a dozen fragments of the lander and its small rover Tenacious in these photos.

One enthusiast catalogued at least 12 separate debris items, though their exact spread is unclear. A faint bright halo of ejected dust surrounds the smudge, consistent with a violent impact. These detailed views provide clues to investigators piecing together how Resilience broke apart on impact.

Laser rangefinder fault pinpointed as cause

Resilience’s onboard laser altimeter began lagging about 100 seconds before landing, causing the descent to proceed too fast. On June 24, ispace confirmed that this rangefinder malfunction during descent prevented the lander from decelerating to the planned touchdown speed. The hard impact “likely tore the spacecraft apart” and destroyed all scientific payloads.

Investigators are examining factors like lunar surface reflectivity or hardware degradation as possible triggers of the failure. Resilience was ispace’s second Hakuto-R moon lander; its predecessor (April 2023) likewise crash-landed. CEO Takeshi Hakamada said the company is working on fixes and “will not let this be a setback” as it pursues future lunar missions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Honor X9c India Launch Confirmed; to Get 108-Megapixel Rear Camera, 1.5K Curved AMOLED Display



Dying Light: Retouched Update Rolls Out June 26, Bringing Graphical Enhancements

Continue Reading

Environment

Trump administration moves to count crypto as a federal mortgage asset

Published

on

By

Trump administration moves to count crypto as a federal mortgage asset

FHFA preps to consider cryptocurrencies as an asset for mortgages

In a landmark shift for the U.S. housing finance system, the Federal Housing Finance Agency has issued a directive ordering Fannie Mae and Freddie Mac to formally consider cryptocurrency as an asset in single-family mortgage loan risk assessments.

The move, signed by FHFA Director William J. Pulte on Wednesday, signals a new era of crypto integration into traditional financial infrastructure — this time within the core of American home lending.

The order directs both housing finance giants to develop proposals that include digital assets — without requiring borrowers to liquidate them into U.S. dollars prior to a loan closing.

Pulte said in a post on X that the move aligns with President Donald Trump‘s vision “to make the United States the crypto capital of the world.”

Historically, cryptocurrency has been excluded from underwriting frameworks due to volatility, regulatory uncertainty, and the inability to easily verify reserves. This directive changes that.

Read more CNBC tech news

The decision comes at a time of increasing institutional embrace of crypto across banking, payments, and federal policy.

“Cryptocurrency is an emerging asset class that may offer an opportunity to build wealth outside of the stock and bond markets,” the order states, acknowledging crypto’s growing role in household financial portfolios.

The directive restricts consideration to digital assets that are stored on U.S.-regulated, centralized exchanges and can be clearly evidenced. It also requires Fannie Mae and Freddie Mac to develop internal adjustments to account for crypto’s market volatility and ensure that any risk-weighted reserves comprised of crypto do not compromise underwriting standards.

Under the directive, both enterprises must submit their assessment proposals to the boards of directors for approval and then to the FHFA for final review.

Fannie Mae and Freddie Mac were put under government control in September 2008 as entities that are known as government-sponsored enterprises, or GSEs.

Continue Reading

Environment

This new San Diego battery can power 200,000 homes during peak hours

Published

on

By

This new San Diego battery can power 200,000 homes during peak hours

Arevon Energy just brought a massive new battery storage project online in San Diego’s Barrio Logan neighborhood, and it’s built to keep the lights on when the grid gets stressed.

The new Peregrine Energy Storage Project clocks in at 200 megawatts (MW)/400 megawatt-hours (MWh), making it one of the biggest battery storage facilities in the San Diego region. That’s enough stored energy to power around 200,000 homes for two hours during peak demand.

Built for $300 million, Peregrine is the fifth utility-scale energy storage project Arevon has launched in California. It uses lithium iron phosphate (LFP) batteries, which are known for their safety and thermal stability. LFP batteries use iron, phosphate, and lithium to create a strong chemical bond that resists overheating, making them safer than other lithium-ion chemistries. They also have a longer lifespan and are less prone to degradation over time.

The facility created more than 90 construction jobs and is expected to generate over $28 million in property tax revenue over its lifetime.

Advertisement – scroll for more content

Energy storage projects like this are key to making California’s grid more stable and reliable. By soaking up clean energy when demand is low and discharging it when the grid is under strain, Peregrine helps reduce blackouts and avoid spikes in electricity prices.

“The successful completion of Peregrine Energy Storage is a result of the collaborative efforts of the project’s stakeholders and the local community who collectively support California’s renewable energy goals,” said Kevin Smith, CEO of Arevon.

Arevon already operates more than 3.2 gigawatts (GW) of renewable energy projects in California, with another 800 MW under construction. Nationwide, it owns and operates 4.7 GW of solar and storage projects across 17 states.

Read more: SpaceX alums just supercharged EV charging at Costco


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending