Connect with us

Published

on

A robotic system capable of replicating traditional Chinese massage techniques has been developed by researchers at Shanghai Jiao Tong University and the University of Shanghai for Science and Technology. According to a paper on the arXiv preprint server, this technology incorporates traditional Chinese medicine (TCM) principles and could find applications in health care, rehabilitation, and wellness. Designed to assist patients with various types of discomfort, the robot may offer a safe and controlled alternative to human-administered massages.

System Features and Capabilities

According to reports, the robotic system features two jaka zhu7 robotic arms, each fitted with multi-functional massage hands closely resembling human hands in shape and size. These hands operate in four modes, which mimic TCM massage techniques, as noted in the study. The modes include palm-punching, vibrating, kneading, and finger techniques, which are based on ancient principles involving zang-fu organs and meridians.

According to the statement made by the research team led by Yuan Xu, Kui Huang, Weichao Guo, and Leyi Du, the system utilises an adaptive admittance control algorithm for optimised force and position control. This technology ensures the safety and comfort of users by accounting for differences in muscle stiffness and posture changes during massages.

Technique Replication and Testing

The development process involved collecting data from TCM experts using motion capture and strength measurement systems. The captured data was used to train machine learning algorithms to replicate massage techniques accurately. As per the research, the robot successfully demonstrated its ability to replicate four massage techniques: beat, press, push, and vibrate.

Future Prospects

The team plans to refine the robotic system further and test its effectiveness in clinical settings. Potential improvements could expand its capabilities to include additional massage styles, enhancing its utility in therapeutic and wellness applications. Researchers hope this innovation will inspire further advancements in automated therapeutic technologies.

Sources indicate that this development marks a significant step in integrating traditional practices with modern robotics, presenting new possibilities for assistive health care solutions.

(Disclaimer: New Delhi Television is a subsidiary of AMG Media Networks Limited, an Adani Group Company.)

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending