Connect with us

Published

on

A comprehensive study involving 91 researchers, including Eske Willerslev from the Lundbeck Foundation GeoGenetics Centre at the University of Copenhagen, has provided critical insights into the genetic and linguistic origins of Indo-European populations. The findings, identify two significant migrations during the Bronze Age that contributed to the spread of steppe ancestry across the Mediterranean. The genetic research links Spanish, French and Italian populations to Bell Beaker ancestry, while Greek and Armenian populations have been connected directly to Yamnaya ancestry from the Pontic Steppe region.

Analyses of Steppe Ancestry Distribution

According to the study published on the preprint server bioRxiv, steppe ancestry in Western Europe is attributed to Bell Beaker populations, who combined their genetic profile with local Neolithic farmers. These migrations align with linguistic theories suggesting a shared origin for Italo-Celtic languages. In contrast, Greek and Armenian ancestry reflects direct Yamnaya influence, with no significant local admixture. This divergence between Eastern and Western Mediterranean populations aligns with the Italo-Celtic and Graeco-Armenian linguistic hypotheses.

Genomic and Strontium Isotope Studies

As per reports, the study sequenced 314 ancient genomes dated between 2,100 and 5,200 years ago from regions including Spain, Italy, Greece, and Turkey. A total dataset of 2,403 genomes was analysed, alongside 224 strontium isotope assessments to trace human mobility. Results showed active migration patterns during the Bronze Age, with non-local individuals identified in Greece, Cyprus and Italy. A notable finding was a Scandinavian individual in Cyprus, suggesting Mediterranean trade routes extended far beyond local boundaries.

Implications for Linguistic Migration Models

These findings substantiate linguistic theories connecting Italic and Celtic languages to Bell Beaker ancestry and Greek and Armenian languages to Yamnaya ancestry. The research contradicts alternative hypotheses, including Indo-Greek and Italo-Germanic models. This study provides a clearer understanding of the genetic and linguistic history of Indo-European populations, offering a vital reference for future investigations into ancient human migrations

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Nvidia Executive Claims AI-Powered Robots in the Future Will Be Trained on Simulation, Share a Hive Mind



Samsung’s Galaxy Ring 2 May Show Up Alongside Galaxy S25 Series at the Upcoming Unpacked Event

Continue Reading

Science

SpaceX Launches Two O3b mPOWER Satellites, Successfully Lands Falcon 9 Booster at Sea

Published

on

By

SpaceX Launches Two O3b mPOWER Satellites, Successfully Lands Falcon 9 Booster at Sea

The Falcon 9 launched from Cape Canaveral Space Force Station in Florida to MEO on July 22, at 5:12 p.m. EDT (2112 GMT) with two SES communication satellites — O3b mPOWER 9 and 10. About 8.5 minutes after launch, the rocket’s first stage returned to Earth, landing gently on the droneship “Just Read the Instructions” in the Atlantic Ocean. It was the sixth launch and landing for the booster and extended a run of spot-on recoveries and frequent orbital missions for SpaceX.

SpaceX Expands SES’s mPOWER Constellation with 89th Falcon Launch of 2025

According to a SpaceX mission update, the Falcon 9’s second stage will fire again to beat the satellites out into MEO — slowing down the satellites’ relative speed to Earth, tricks mission planners can use to reduce the moment magnitude before the ground impact. The launch was scrubbed by the abort itself but was aborted 11 seconds before the abort was actually supposed to happen. The abort was not immediately explained, and SpaceX did not immediately request help troubleshooting the issue. The satellites would bring the SES O3b mPOWER constellation up to 100 satellites, a constellation already taking shape with four launches with SpaceX in 2022 and 2024.

The spacecraft are all out of Boeing’s assembly line and weigh about 3,700 pounds each. Today’s successful launch means that SES has 10 satellites in orbit, of which 3 more are currently under construction for launch to orbit within the next 12 months. mPOWER provides a high-capacity internet service across the globe, especially in less connected parts, on-the-go assets, and industrial and large enterprise facilities.

SpaceX’s 89th Falcon launch of 2025 and a trio of Starship test hops are part of a new reliability and cadence standard. Also part of the deal is the company’s delivery of reusable launch capabilities for commercial and deep space missions.

The buildup of SES’s mPOWER fleet is a significant step toward a 13-satellite constellation and a validation of SpaceX’s role as a force in the commercial satellite and internet infrastructure business.

Continue Reading

Science

Astronomers Solve Betelgeuse’s 6-Year Dimming Mystery by Spotting Secret Companion Star

Published

on

By

Astronomers Solve Betelgeuse’s 6-Year Dimming Mystery by Spotting Secret Companion Star

For the first time, astronomers have directly imaged a long theorised companion star orbiting Betelgeuse, the red supergiant famed for its dramatic brightness shifts visible to the naked eye. This elusive companion is believed to be the cause behind Betelgeuse’s puzzling six-year dimming cycle, a mystery that has persisted for over a thousand years. The star system’s newfound configuration, which features Betelgeuse gradually nearing the end of its life and a tightly orbiting blue-white companion, could also foretell a cosmic cannibalisation event in the distant future.

Gemini Telescope Unveils Hidden Companion of Betelgeuse, Solving Ancient Stellar Mystery

As per NASA’s announcement, the detection was made possible through observations by the Gemini North telescope in Hawaii, using the ‘Alopeke instrument. Lead scientist Steve Howell of NASA Ames Research Centre credited the telescope’s high angular resolution and speckle imaging technique for the breakthrough. Past efforts with the Hubble Space Telescope and Chandra X-ray Observatory had failed to reveal the companion. But Gemini’s short-exposure imaging pierced through atmospheric distortions to resolve the faint partner star.

The team found that this companion is roughly 1.5 times the mass of the Sun and orbits just four astronomical units from Betelgeuse—about four times the distance from Earth to the Sun. This makes it the closest detected companion to a red supergiant ever observed, existing deep within Betelgeuse’s extended atmosphere. Scientists believe the companion hasn’t yet ignited hydrogen fusion, suggesting it remains in an early stellar stage.

While the two stars likely formed simultaneously, their evolutionary timelines differ drastically due to mass. Betelgeuse, 700 times the size of the Sun, has aged rapidly, while the smaller star remains youthful. This disparity also sets the stage for a grim outcome: gravitational forces may eventually pull the companion into Betelgeuse, a fate predicted to unfold within the next 10,000 years.

The detection not only resolves Betelgeuse’s mysterious heartbeat-like dimming but also provides astronomers with a new path to study stellar evolution in red supergiants. Another clear view of the companion is expected in November 2027, when it reaches maximum separation from Betelgeuse. The findings were published on July 21 across two papers in The Astrophysical Journal.

Continue Reading

Science

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Published

on

By

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Scientists say Earth will spin slightly faster on Tuesday, July 22, 2025, making that day roughly 1.34 milliseconds shorter than the usual 24-hour period. This subtle acceleration, detected by atomic clocks and satellites, will make July 22 the second-shortest day in recorded history. (Only July 10, 2025 — 1.36 ms short — was shorter this year.) Experts note that since 2020, Earth has repeatedly set new short-day records, a trend now under close watch by global timekeeping authorities. While imperceptible in daily life, the phenomenon may ultimately require an unprecedented “negative” leap second to keep atomic time aligned with Earth’s spin.

Earth’s Unusual Acceleration

According to previous studies, Earth’s rotation is not perfectly constant. The July 22 rotation was measured at 1.34 milliseconds less than a normal day. Reports say that 2025 is witnessing some of the fastest spins on record – the quickest since continuous measurements began in 1973.

In fact, new data showed that earlier in 2025 the shortest day occurred on July 10 (about 1.36 ms shorter than 24 hours), with July 22 a “close runner-up” at 1.34 ms below normal. If current models hold, another brief day is expected on August 5 (roughly 1.25 ms short), leaving July 22 as the second-shortest of the year. Altogether, researchers describe this as a “puzzling trend” of Earth’s rotation speeding up in recent years.

Speed-Up reasons

Scientists attribute these fluctuations to a mix of celestial and geophysical factors. The Moon’s orbit is a prime factor: in early July it reached maximum declination, pulling off-center and briefly accelerating Earth’s spin. The same lunar alignment on July 22 is expected to repeat the effect. Normally, lunar tides act as a brake, gradually lengthening days, but on these shorter timescales the Moon’s position can instead speed up the rotation.

Other subtle influences also play a role. Climate-driven mass shifts – such as melting ice sheets and moving ocean water – change Earth’s moment of inertia and can tweak day length. Even large earthquakes or seasonal atmospheric changes can nudge Earth’s rotation by tiny microseconds.

Continue Reading

Trending