Connect with us

Published

on

SpaceX is set to launch its Starship rocket for its seventh flight test on January 13, with liftoff planned at 5 p.m. EST from the Starbase facility in South Texas. The 400-foot-tall reusable rocket has been designed to support missions to the Moon and Mars. Reportedly, for the first time, the mission aims to deploy payloads in space, marking a significant milestone in the rocket’s testing phase. The launch webcast will begin approximately 35 minutes before the scheduled liftoff.

Mission Objectives and Payload Details

According to report from space.com, this test will feature the deployment of ten mock satellites. These are said to mimic the size and weight of next-generation Starlink satellites, as part of a preparatory exercise for future satellite deployment missions. The satellites, as noted, will follow the same suborbital trajectory as the rocket, with splashdown targeted in the Indian Ocean. Starship’s 50-metre upper stage, referred to as “Ship,” is also expected to return via a controlled splashdown in the Indian Ocean, consistent with previous test flights.

Reusability and Booster Retrieval

As reported by space.com, the Super Heavy booster used in this mission will include a previously flown Raptor engine, marking the first reuse of hardware in a Starship flight. Efforts will also be made to repeat the catch of the Super Heavy booster using Starbase’s launch tower, a manoeuvre that was successfully executed in October 2024 but faced challenges in November’s test due to communication issues.

Upcoming Launch Schedule

The test coincides with an active period in space exploration. Blue Origin’s New Glenn rocket is preparing for its debut on January 10, and a SpaceX Falcon 9 mission carrying private moon landers is slated for January 15. These developments underscore the rapid advancements being made in the commercial space sector.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending