Connect with us

Published

on

Jupiter’s atmospheric composition has been called into question through observations made using an old technique by an amateur astronomer, Steve Hill. The findings have indicated that the planet’s iconic swirling clouds may not be composed of ammonia ice, as previously assumed. This revelation stems from data collected with commercial telescopes and spectral filters, presenting new perspectives on the gas giant’s atmospheric dynamics and chemistry. The observations have sparked further investigation into the structure of Jupiter‘s cloud layers.

Findings from Observational Studies

According to research published in Earth and Space Science, Hill applied a method known as band-depth analysis. This technique measures light absorption at specific wavelengths to map the abundance of gases like ammonia and methane in Jupiter’s atmosphere. As reported by space.com, the data revealed that reflective cloud layers are located at pressure levels of 2-3 bar, far deeper than where ammonia ice was expected to condense at 0.7 bar.

Patrick Irwin, a planetary physicist at the University of Oxford, reviewed Hill’s results and confirmed their accuracy through comparisons with data from instruments such as NASA’s Juno spacecraft and ESO’s Very Large Telescope (VLT). He noted to space.com that the main reflection appears to stem from ammonium hydrosulfide clouds or photochemical products, rather than pure ammonia ice.

Implications and Future Research

Reports indicate that these findings underline the role of photochemistry in shaping Jupiter’s atmosphere, where ammonia is often destroyed faster than it can rise to the upper layers. Similar processes have been observed on Saturn, where cloud layers are also deeper than predicted. Researchers aim to refine models by integrating additional data from the VLT, Juno, and other observatories to better understand ammonia’s vertical distribution.

Hill’s approach demonstrates the potential of collaborative efforts between amateur and professional astronomers. These findings not only challenge existing models but also open new pathways for studying atmospheric dynamics on gas giants.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Asteroid 2024 YR4 Raises Concerns Over Moon Impact; Scientists Consider Nuclear Defence

Published

on

By

Asteroid 2024 YR4 is drawing global attention as a possible lunar impactor in 2032. Though the chances of Earth impact have dropped, a collision with the Moon could still create dangerous orbital debris. Scientists stress preparedness, exploring deflection missions and nuclear defense strategies.

Continue Reading

Science

Hubble Spots White Dwarf Devouring Icy Pluto-Like Planet 260 Light-Years Away

Published

on

By

Using Hubble’s ultraviolet spectrograph, scientists detected carbon, nitrogen, sulphur, and abundant oxygen falling onto a white dwarf 260 light-years away, evidence of an icy planetesimal being torn apart. The find shows volatile worlds can persist into a star’s final stages, offering a preview of the Sun’s distant fate.

Continue Reading

Science

India’s Barren Island Volcano Records Mild Activity in September 2025, Scientists Report

Published

on

By

Barren Island in the Andaman Sea experienced two small eruptions on Sept. 13 and 20, 2025. Officials confirmed no casualties or hazards. Scientists link the second event to a recent earthquake and continue to monitor the volcano, which has erupted intermittently since its first recorded activity in 1787.

Continue Reading

Trending