Connect with us

Published

on

Efforts to explain the universe’s anomalies continue to focus on dark matter, a mysterious form of matter believed to account for most of the universe’s mass. This invisible entity influences galaxy movements and cosmic structures far more than visible matter. While researchers have long explored potential mass ranges for dark matter, a new study reveals that excessively heavy dark matter could challenge established physical models, particularly the Standard Model of particle physics.

Findings from the Study on Dark Matter’s Mass Limitations

According to a paper published on the preprint platform arXiv, the mass of dark matter particles might face significant restrictions due to their interaction with the Higgs boson. This particle, known for giving other particles mass, is influenced by dark matter through feedback interactions. If dark matter particles exceed a few thousand giga-electron volts (GeV), their interaction could drastically alter the Higgs boson’s mass. This disruption would potentially halt critical particle interactions, raising questions about the validity of existing physical laws.

Challenges in Exploring Heavier Dark Matter

As per reports, it was highlighted that the early universe’s hot and dense conditions allowed dark matter to interact more frequently with regular particles. These interactions ceased as the universe cooled, leaving dark matter to “freeze out.” The study noted that heavier dark matter exceeding current mass limits would conflict with observed physical phenomena. Alternative mechanisms or exotic interactions, potentially bypassing the Higgs boson, were identified as rare but conceivable scenarios.

Shifting Focus to Lighter Dark Matter Candidates

Researchers emphasised the need to investigate lighter dark matter candidates. Particles such as axions, which are much lighter and align with some theoretical models, have garnered increased attention. Experimental designs may now shift toward targeting low-mass particles, reflecting this refined approach to uncovering dark matter’s true nature.

Efforts to identify dark matter remain ongoing, with its discovery holding the potential to revolutionise scientific understanding of the universe.

Continue Reading

Science

NASA’s ESCAPADE Mission Will Send Twin Probes to Uncover Mars’s Atmospheric Secrets

Published

on

By

NASA’s ESCAPADE mission will launch twin mini-satellites, Blue and Gold, to Mars aboard Blue Origin’s New Glenn. The probes will study how solar wind stripped away Mars’s atmosphere and water, helping scientists understand the Red Planet’s lost climate and its transformation into the dry world we see today.

Continue Reading

Science

Webb Finds Phosphorus-Bearing Gas in an Ancient Brown Dwarf

Published

on

By

NASA’s James Webb Space Telescope has detected phosphine (PH₃) in the atmosphere of the ancient brown dwarf Wolf 1130C, about 54 light-years away in Cygnus. This marks the first confirmed detection of a phosphorus-bearing gas in such a metal-poor object. The finding surprises astronomers, as phosphine was previously undetected in similar brown dwarfs, challenging …

Continue Reading

Science

Bad Weather Delays Blue Origin’s New Glenn Launch of NASA’s Mars Mission

Published

on

By

Blue Origin’s New Glenn launch was postponed on November 9, 2025, because of heavy clouds at Cape Canaveral. The rocket was carrying NASA’s twin ESCAPADE orbiters to study Mars’s atmosphere. The delay came a day before the FAA’s new daytime launch ban during a federal shutdown. The next attempt is scheduled for November 12.

Continue Reading

Trending