Connect with us

Published

on

An exoplanet with extreme weather conditions, including iron rain and violent winds, has been identified around 900 light-years away. The planet, WASP-121 b, has been found to experience intense atmospheric activity, with wind speeds surpassing those of the strongest hurricanes known in the solar system. Astronomers studying this ultra-hot Jupiter have detected powerful jet streams that transport vaporised metals across different layers of its atmosphere, contributing to unique and complex weather patterns.

Atmospheric Phenomena Observed

According to a study published in Nature, observations were conducted using the Very Large Telescope (VLT) in Chile’s Atacama Desert. The findings reveal that elements such as iron and titanium are carried across the planet by strong atmospheric currents, leading to complex weather patterns. Dr Julia Victoria Seidel, a researcher at Observatoire de la Côte d’Azur, said in an official press release that the planet’s climate challenges existing meteorological understanding.

As reported, WASP-121 b belongs to a category of planets known as ultra-hot Jupiters. With a mass approximately 1.2 times that of Jupiter, it orbits its star in just 30 Earth hours. Due to its close proximity, the planet is tidally locked, meaning one side is exposed to continuous daylight while the other remains in perpetual darkness.

On the dayside, extreme temperatures cause metals such as iron to vaporise. These elements are then transported by high-speed winds to the nightside, where they condense and fall as liquid metal rain. A jet stream spanning half of the planet has also been detected, moving atmospheric material between the two hemispheres. Dr Seidel explained to [news source] that a separate flow in the lower atmosphere moves gas from the hotter to the cooler side, an unprecedented meteorological phenomenon.

Advanced Observations Using VLT

The ESPRESSO instrument on the VLT was used to study the atmosphere in detail, allowing scientists to map different atmospheric layers. Light from multiple telescopes was combined to analyse fainter details of the planet’s atmospheric composition.

Tracking the movement of hydrogen, sodium, and iron provided insights into wind patterns at varying altitudes. Dr Leonardo A. dos Santos, a researcher at the Space Telescope Science Institute, told [news source] that such detailed observations would be challenging with space telescopes, highlighting the importance of ground-based research.

A surprising discovery was the presence of titanium in the planet’s atmosphere, which had not been detected in previous studies. Researchers believe that the element was hidden in deeper atmospheric layers. Dr Bibiana Prinoth, a researcher at Lund University, told [news source] that studying such distant planets in this level of detail is remarkable.

These findings contribute to the growing understanding of exoplanetary atmospheres, demonstrating the extreme and diverse conditions beyond the solar system.

Continue Reading

Science

Comet C/2025 K1 (ATLAS) Breaks Into Three Pieces Following Close Approach to the Sun

Published

on

By

NASA’s fractured comet C/2025 K1 (ATLAS) dazzled stargazers on Monday night, offering a rare live view of a cosmic object breaking apart after a close encounter with the Sun. The livestream, organised by the Virtual Telescope Project, began at 10 p.m. EST on November 24 (0300 GMT on November 25) and will broadcast telescopic views of the comet’s multiple large fragmen…

Continue Reading

Science

James Webb Telescope May Have Discovered Universe’s Earliest Supermassive Black Hole

Published

on

By

James Webb may have discovered the universe’s earliest supermassive black hole in galaxy GHZ2. Observations reveal high-energy emission lines, challenging existing models of rapid black hole and galaxy growth. Upcoming JWST and ALMA studies aim to confirm AGN activity and refine our understanding of early cosmic evolution.

Continue Reading

Science

NASA’s Nancy Grace Roman Space Telescope Surpassing Expectations Even Before Launch, Reveals Research

Published

on

By

NASA’s upcoming Roman Space Telescope is expected to measure seismic waves in over 300,000 red giant stars, far greater than early predictions. These signals will help scientists better understand exoplanet systems and the Milky Way’s ancient core. Researchers say Roman’s natural survey design enables this breakthrough even before the telescope has launched.

Continue Reading

Trending