Connect with us

Published

on

A theoretical form of radiation first proposed by Stephen Hawking may have played a role in shaping the universe after the Big Bang, as suggested by recent research. The phenomenon is known as Hawking radiation. It was introduced in the 1970s when Hawking theorised that black holes could emit radiation despite their widely accepted nature as objects that absorb all matter. The study suggests that primordial black holes which are believed to have existed in the early universe, may have released intense radiation. This emission could have influenced cosmic structures in ways previously unaccounted for.

Findings from the Study

According to the study published in the Journal of Cosmology and Astroparticle Physics, a phase may have occurred in the early universe where primordial black holes dominated the energy density before evaporating through Hawking radiation. The researchers state that ultra-light primordial black holes could have rapidly gained prominence during expansion, leaving behind observable effects. The research suggests that the impact of these black holes was powerful enough to influence the formation of galaxies and cosmic structures.

Examining the Role of Hawking Radiation

The study builds on Hawking’s work. He merged aspects of quantum mechanics and general relativity. Black holes were once thought to trap everything indefinitely. The Hawking’s theory introduced the possibility of radiation emission. It is reported that larger black holes radiate at an extremely low rate, making detection with existing technology impossible. The focus shifts to smaller primordial black holes, estimated to be less than 100 tons in mass, as their radiation levels could have shaped the universe’s early structure.

Potential Implications of the Research

The study explores the possibility of Hawking relics which are stable particles resulting from the evaporation of black holes. If these particles are detected, it could provide insights into the cosmic radiation budget and the formation of atomic nuclei. The research suggests that primordial black holes must have evaporated before certain cosmic events to align with existing atomic models. While Hawking relics have not been directly observed, future technological advancements may allow for their detection. The findings open avenues for understanding black hole physics and the universe’s evolution.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Aghathiyaa Tamil Fantasy Thriller Now Streaming on Sun NXT



Assassin’s Creed Shadows Hits 2 Millions Players, Surpasses Launches of Assassin’s Creed Origins, Odyssey

Related Stories

Continue Reading

Science

ISRO Says Gaganyaan Mission Is 90 Percent Complete, Aiming for 2027 Launch

Published

on

By

ISRO has completed 90 percent of the Gaganyaan mission’s development. With three test flights ahead, India is set to join the elite group of nations capable of sending humans to space by 2027, marking a landmark step in its space exploration journey.

Continue Reading

Science

Saturn’s Moon Titan Breaks One of Chemistry’s Oldest Rules, NASA Study Reveals

Published

on

By

Saturn’s moon Titan has shocked scientists by breaking a key chemistry rule. NASA and Chalmers University researchers found that polar and nonpolar molecules, usually immiscible, can mix under Titan’s extreme cold. The discovery deepens our understanding of prebiotic chemistry and could reveal how life’s building blocks form in frigid extraterrestrial environmen…

Continue Reading

Science

Scientists Construct 5-Micron Engine Generating Effective Heat of 13 Million Degrees Celsius Without Burning

Published

on

By

A team of scientists has created a microscopic engine made from a 5-micrometre glass bead suspended in an electric field. By applying oscillating voltages, the bead moves as if it’s in an environment of 13 million°C, even though it remains cool. The study reveals bizarre thermodynamic effects at tiny scales, offering clues to how natural molecular “machines” wo…

Continue Reading

Trending