Connect with us

Published

on

Over the years, scientists have been developing batteries that last longer and are adjustable to different temperatures. However, this time, the innovation has taken to another level. Lithium-ion batteries are commonly used to provide power for smartphones and cars. Although these batteries are covered with a robust layer to prevent potential stress from air intake, they are not ideal for soft robots or wearables. Recently, a team of scientists at the University of California, Berkeley, has built a non-toxic flexible battery that is super-stretchable and survives twisting or even stabbing.

About Self-Healing Lithium Battery

This self-healing stretchable battery has been developed by a multidisciplinary team at the University of California, Berkeley, Georgia Institute of Technology, and the Hong Kong University of Science and Technology. According to their published paper in the Journal Science Advances, this group of scientists has proved that the stretchable lithium battery remained stable after undergoing 500 charge/discharge cycles. The properties of this battery are highly advanced, as it heals itself, and the jelly-like structure makes it flexible to use.

The Process

The development of this new battery was enforced by using a zwitterionic polymer that comprised both a positive and a negative charge. Such polymers bond with water molecules with a charged part, while the negative charge attracts the lithium ions. This arrangement lets the water be bound tightly within the battery, further limiting the risk of splitting and releasing lithium ions when the voltage is applied. Furthermore, the scientists added acrylic acid, followed by a fluorine-free Li salt-based hydrogel electrolyte (stability window up to 3.11 volts) as a cross-linker.

The Results

As a result of the above-exemplified process, the battery was 19 percent water and exhibited stability with 50% humidity. The expert team of scientists then assessed its functioning by attaching it to a circuit board running LED lights. As a result, the battery performed well for over a month, and very little water splitting was witnessed. Post that, the battery continued to work even after suffering stretches, punctures, needles, razors, and folds.

This expert team of scientists from the University of California, Berkeley, has proved that innovation knows no limit. These batteries will work wonders in soft robots and wearables. Surviving the damages and the presence of non-toxic components is what makes it outshine as compared to other lithium batteries.

Continue Reading

Science

NASA’s Artemis II Astronauts Will Double as Test Subjects for Deep Space Health Research

Published

on

By

NASA’s Artemis II mission will send astronauts beyond low Earth orbit as both scientists and volunteer test subjects. The crew will conduct health, radiation, and lunar studies, providing vital data to protect future explorers. Results will guide safety protocols for lunar and Mars missions, advancing human readiness for long-duration deep space exploration.

Continue Reading

Science

Black Hole Kicked Away? Gravitational Waves Reveal Einstein’s Ripples in Spacetime

Published

on

By

Astronomers have, for the first time, measured the recoil speed and direction of a newborn black hole using gravitational waves. Data from the 2019 event GW190412 revealed the remnant shot away at 50 km/s. This breakthrough shows gravitational waves can reconstruct full 3D motion, offering new ways to connect black hole mergers with light signals.

Continue Reading

Science

Canadian Startup Qubic Unveils Cryogenic Amplifier That Could Transform Quantum Computing

Published

on

By

Qubic Technologies has developed a cryogenic amplifier that slashes heat emissions in quantum computers by 10,000 times. Expected to launch in 2026, the breakthrough could shrink cooling demands, reduce costs, and boost system efficiency. Experts suggest it may help overcome barriers to scalability, pushing quantum machines closer to commercial deployment.

Continue Reading

Trending