Connect with us

Published

on

A team of international astronomers, led by Weicheng Zang from the Centre for Astrophysics | Harvard & Smithsonian (Cfa), had announced the discovery of a planet whose size is twice that of Earth, and orbits around its star at a distance farther out than Saturn. These findings reveal how planets differ from our existing solar system. The discovery was first published in the Journal Science on April 25, 2025. Scientists fetched this data from the Korea Microlensing Telescope Network (KMTNet), also known as the largest microlensing survey to date.

This Super Earth, called a planet due to its size being bigger than Earth but smaller than Neptune, is more significant as it is a large study where the masses of many planets have been measured relative to the stars that they orbit. As per physics.org, the team of researchers found fresh information about the number of planets that surround the Milky Way.

Study by KMTNet

According to the study conducted using Korean Microlensing data in which light from faraway objects is amplified through the use of an interfering body, called a planet. This technique is very effective for finding planets at a far distance, between Earth and Saturn’s orbit.

This study is considered to be large for its kind because there are about three times more planets, including planets that are eight times smaller than the previous planets found with the help of microlensing. Shude Mao, a professor, said that the current data gives a hint of how cold planets are formed. With the help of KMTNet data, we can know how these planets were formed and evolved. KMTNet has three telescopes in South Africa, Chile and Australia.

Understanding the Exoplanets

Such studies show that the other systems can have a small, medium and large variety of planets in Earth’s orbit. CFA-led research suggests that there can be more Super Earth Planets in other solar systems’ outer regions. Jennifer Yee says that there is a possibility that outside the Earth’s trajectory, other galaxies may have more such planets that are bigger than Earth’s size yet smaller than Neptune.

Findings and Implications

Youn Kii Jung, who operates KMTNet, says that in Jupiter-like orbits, the other planetary systems may not be similar to ours. Scientists will try to determine how many such planets exist. A study indicates that there are at least as many super-Earths as there are Neptune-sized planets in the universe.

Continue Reading

Science

How NASA Saved a Dying Camera Near Jupiter with Just Heat

Published

on

By

How NASA Saved a Dying Camera Near Jupiter with Just Heat

NASA’s Juno spacecraft, in orbit around Jupiter, had a huge problem when its JunoCam imager started to fail after sitting through the planet’s harsh radiation belts for so many orbits. Designed to only last through the initial few orbits, JunoCam astonishingly endured 34 orbits. Yet by the 47th orbit, the effects of radiation damage became visible, and by the 56th orbit, images were almost illegible. With few alternatives and time slipping away before a close flyby of Jupiter’s volcanic moon Io, engineers made a daring but creative gamble. Employing an annealing process, they sought to resuscitate the imager by warming it up—an experiment that proved successful.

Long-distance fix

According to NASA, JunoCam’s camera resides outside the spacecraft’s radiation-shielded interior and is extremely vulnerable. After several orbits, it started developing damage thought to be caused by a failing voltage regulator. From a distance of hundreds of millions of miles, the mission team implemented a last-ditch repair: annealing. The technique, which subjects materials to heat in order to heal microscopic defects, is poorly understood but has been succeeding in the lab. By heating the camera to 77°F, scientists wished to reorient its silicon-based parts.

At first, efforts were for naught, but only days before the December 2023 flyby of Io, the camera unexpectedly recovered—restoring close-to-original image quality just in time to photograph previously unseen volcanic landscapes.

Radiation Lessons for the Future

Though the camera showed renewed degradation during Juno’s 74th orbit, the successful restoration has led to broader applications. The team has since applied similar annealing strategies to other Juno instruments, helping them withstand harsh conditions longer. Juno’s findings are now informing spacecraft design across the board. “We’re learning how to build radiation-tolerant systems that benefit both defense and commercial satellites,” said Juno’s principal investigator Scott Bolton. These findings would inform future missions, such as those visiting outer planets or working in high-radiation environments near Earth, in the Van Allen belts. Juno’s mission continues to pay dividends with unexpected innovations—a lesson in how a small amount of heat can do wonders.

Continue Reading

Science

Rising Rocket Launches May Delay Ozone Layer Recovery, Study Finds

Published

on

By

Rising Rocket Launches May Delay Ozone Layer Recovery, Study Finds

With the increase in global rocket launches, scientists are reporting concerns about their impact on the ozone layer, our planet’s natural shield against harmful UV radiation. The research team, which includes Sandro Vattioni and other scientists, put emphasis on the environmental risks that can increase with the rocket emissions are still now underestimated. However, it can be addressed with proactive and coordinated efforts. With a boom in the commercial space industry, there comes opportunity; however, with this comes a lot of threat to the environment by causing ozone layer depletion during the launch and re-entry of the spacecrafts.

Rocket Emissions Pose a Growing Threat to the Ozone Layer

As per Phys org, Rockets release pollutants as soot and chlorine into the atmosphere’s middle and upper parts. These particles remain for longer than the ground ones and catalyse the chemical reactions that damage the ozone layer. The re-entry of the satellite releases metal particles and nitrogen oxides, which in turn do more damage. The current models don’t usually account for the effects through re-entry, making it an overall cost to the environment, which is higher than the estimated one.

Research has been conducted through the climatic simulations show that if rocket launches increase to 2,040 yearly by the end of 2030. The global thickness of the ozone layer is yet healing from the previous damage caused by CFCs, which re now banned, however, full recovery will still not be achieved even after 40 years. The unchecked emissions might be a cause to the recovery delay.
Global Cooperation Needed to Protect Earth’s Atmospheric Shield

Rocket fuel selection is significant, as the majority of rockets utilise propellants that have soot and chlorine, which are depleting the ozone layer. A small percentage utilised cryogenic fuels like hydrogen and oxygen as liquids, which are thought to have less of an effect on the ozone layer; however, it is difficult to handle.

For protecting the ozone layer, the space industry may have transitioned to cleaner fuels, check emissions and stick to the strict guidelines. The Montreal Protocol has helped us phase out CFCs, where worldwide collaboration is needed to save the atmosphere of Earth, with the advancement in space exploration.

Continue Reading

Science

New Study Reveals Mars Faced Heavy Rains: Possible Clue to Ancient Life

Published

on

By

New Study Reveals Mars Faced Heavy Rains: Possible Clue to Ancient Life

The Mars surface is a hostile and dry environment, having little atmosphere with no stagnant water. The new research tells that this has not always been the case. Mars has faced many rains that actually shaped the landscape. If in the past era any alien life had existed, it would likely need some sort of protection, maybe even umbrellas, to tolerate the downpour. This study was published in Nature Geoscience, and it reviewed the crater erosion patterns on the planet.

Heavy Rains and a Thicker Atmosphere: Rethinking Mars’ Climate History

As per the Royal Astronomical Society, it was concluded that the Martian atmosphere during that time was thick enough to bear heavy rains. Researchers used the satellite data and erosion modelling to determine how much water flowed across the Martian surface. They found that the precipitation level must have been somewhere similar to the tropical region of the Earth at present. This signals that Mars once had the potential to hold surface water in rivers; in fact, there is a possibility it even had lakes.

Could Mars Have Supported Life? What New Evidence Suggests

However, only rain could not signify the possibilities of life sustenance. These constant downpours led to erosion, and it became a driving force in the change of the shape of Mars’ landscape. This tells us that if there is any primitive life existed in the past, it would have adapted to the climate and terrain of Mars.

The findings derived from the observation challenge the old assumptions about Mars of being dry and cold. In fact, they support the opinion that early Mars had a wet and warm climate, which is suitable for microbial life. Further, it adds excitement to the current missions named NASA’s Perseverance rover, which is active in the search for fossilised signs of past life on Mars.

This research not just redefines Mars’ past era climate, but also widens the scope of what early life could look like on other planets. It also tells us that the extraterrestrial life search is not just limited to Earth but also to the planets that had the possibility of life in the past.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Hacks Season 4 on JioHotstar: Deborah and Ava Return in a High-Stakes Late-Night Comedy Drama



Pixel 10 Pro Design Officially Revealed Ahead of August 20 Launch; Google Store Offer Teased

Continue Reading

Trending